Searching for new physics (and DM):

Implications of uncertainties in the determination of DM distribution in the MW

María Benito in collaboration with A. Cuoco & F. locco

JSPS-FAPESP Workshop 20/02/2019

Why it is important?

Direct/Indirect WIMP searches

Simplified version

Direct

Bozorgnia + JCAP 1605 (2016)

Indirect

Flux due to DM self-annihilation:

$$\Phi_{\rm DM} \sim \Phi_{\rm PP} \int_{\rm l.o.s} {\rm d}l \ \rho_{DM}^2$$

Dependence on astrophysics

Targets for indirect WIMP searches: our Galaxy

Synthetic γ-ray intensity map from DM annihilation (created with CLUMPY)

Credit: M. Hütten

Problem:

MW reconstructed DM profile proceeds from astrophysical observations - uncertainties need to be properly accounted for!

Interpretation of direct/indirect searches depend upon DM density [local/in target (MW)]

Goal:

Quantify uncertainties on the reconstructed DM density profile of the $\ensuremath{\mathsf{MW}}$

How?

Rotation Curve method

How to determine DM density profile?

Rotation Curve method

Observed RC: galkin Pato & locco, SoftwareX 6 (2017) $2.5 < {
m R} < 22~{
m kpc}$

JSPS-FAPESP Workshop

Luminous component of the Milky Way

Bulge distribution:

$\rho_b(x, y, z) = \bar{\rho}_b f(x, y, z)$

X

f(x, y, z)	Bar angle [º]	Xo:Yo:Zo	Reference
e^{-r}	25	2.8 : 1.4 : 1	K.Z. Stanek + (1996) [G2]
$e^{-r_{s}^{2}/2}$	24	3.6 : 1.5 : 1	K.Z. Stanek + (1996) [E2]
$e^{-r_s^2/2} + r_a^{-1.85}e^{-r_a}$	20	3.7 : 1.5 : 1	H. Zhao (1996)
$e^{-r_s^2}/(1+r_s)^{1.8}$	20	2.6 : 0.8 : 1	N. Bissantz & O. Gerhard (2002)
$\operatorname{sech}^2(-r_s) + e^{-r_s}$	13	3.7 : 1.3 : 1	A.C. Robin + (2012)
$e^{-r_s^2}/(1+r_s)^{1.8}$	15	3.2 : 2.2 : 1	E. Vanhollebeke + (2013)

María Benito

Stellar disc distribution:

 $\rho_d(r,z) = \bar{\rho}_d f(r,z)$

X

•

	f(r,z)		Scale-length [kpc]	Scale-height [kpc]	Reference
	$e^{-r}\operatorname{sech}^2(z)$ $e^{-r}e^{-(z+z_0)}$	thin thick	2.75 2.75	0.27 η(r) 0.44 η(r)	C. Han & A. Gould (2003)
$(r^2$	$e^{-r} e^{- z }$ $e^{-r} e^{- z }$ e^{+z^2}	thin thick halo	2.6 3.6	0.30 0.90	M. Juric + (2008)
$(r^2$	$e^{-r} e^{- z }$ $e^{-r} e^{- z }$ $+ z^2)^{-2.75/2}$	thin thick halo	2.75 4.1	0.25 0.75	J. T. A. De Jong + (2010)
	$e^{-r} e^{- z } e^{-r} e^{- z }$	thin thick	2.75 4.1	0.25 0.75	S. Calchi Novati & L. Mancini (2011)
	$e^{-r} e^{- z }$	single	2.15	0.4	J. Bovy & H.W. Rix (2013)

Gas distribution:

$$\rho_g(x, y, z) = \rho_{H_2}(x, y, z) + \rho_{H_I}(x, y, z) + \rho_{H_{II}}(x, y, z)$$

Components		Range	Reference
molecular ring cold, warm warm, hot	H2 HI HII	r = 3 - 20 kpc	K. Ferrière (1998)
CMZ, disc CMZ, disc warm, hot, very hot	H₂ HI HII	$r = 0.01 - 3 \; \text{kpc}$	K. Ferrière + (2007)

Uncertainties CO-to-H₂ factor: $X_{CO}(r > 3 \text{ kpc}) = (5.0 \pm 2.5) \times 10^{19} \text{ cm}^{-2} \text{K}^{-1} \text{km}^{-1} \text{s}$ $X_{CO}(r < 3 \text{ kpc}) = (1.9 \pm 1.4) \times 10^{20} \text{ cm}^{-2} \text{K}^{-1} \text{km}^{-1} \text{s}$

K. Ferriere + ApJ 467 (2007)

JSPS-FAPESP Workshop

How to reconstruct DM density profile?

Rotation Curve method

How to reconstruct DM density profile?

Rotation Curve method

1) Observed RC

2) RC for the luminous component

gNFW density profile

$$\rho_{DM}(r) = \rho_0 \left(\frac{R_0}{r}\right)^{\gamma} \left(\frac{R_s + R_0}{R_s + r}\right)^{3-\gamma}$$

Three free parameters: $\gamma,\,R_{\text{s}},\,\rho_{\text{O}}$

How to reconstruct DM density profile?

Rotation Curve method

No.	Paramete	Parameters of our analysis		
1	\mathcal{M}_{i}	30 baryonic morphologies		
2	$ ho_0$	DM parameters		
3	R_s			
4	γ			
5	R_0	Sun's galactocentric distance		
6	Σ_*	baryonic normalisation		
7	$\langle au angle$			

7D parameter space: $\mathcal{M}_i,\,\gamma,\,R_s,\,
ho_0,\,R_0,\,\Sigma_*,\,\langle au
angle$

$$\chi^2 = \sum_{j} \frac{\left(v_j - v_j^{obs}\right)^2}{\sigma_{v_j^{obs}}^2} + \frac{\left(\langle \tau \rangle - \langle \tau \rangle^{obs}\right)^2}{\sigma_{\langle \tau \rangle^{obs}}^2} + \frac{\left(\Sigma_* - \Sigma_*^{obs}\right)^2}{\sigma_{\Sigma_*^{obs}}^2}$$

 Normalisation bulge
 Normalisation disc

 $\langle \tau \rangle^{obs} = 2.17^{+0.47}_{-0.38} \times 10^{-6}$ $(\ell, b) = (1.50^{\circ}, -2.68^{\circ})$ $\Sigma^{obs}_* = 38 \pm 4 \, M_{\odot} \, pc^{-2}$

 Popowski +
 Bovy & Rix

 ApJ 631 (2005)
 ApJ 779 (2013)

Scan the 7D parameter space to obtain the Likelihood profile

Further profile over $\mathcal{M}_i, \langle \tau \rangle, \Sigma_*$

$$\chi^2_{
m RC}(R_s,
ho_0, \gamma, R_0)$$

Publicly available!

María Benito

Example: Galactic Center γ**-ray excess**

$$\mathcal{J} = \int_{\Delta\Omega} d\Omega \int_{\text{l.o.s.}} ds \, \rho_{\text{DM}}^2(r(s,\psi))$$

ROI:

 $40^{\circ}x40^{\circ}$ around GC with a strip of $\pm 2^{\circ}$ along the Galactic plane excluded

Example: Galactic Center excess

Take away I

Likelihood profile (based on real data) for the reconstructed DM density profile in the MW.

It represents state-of-the-art from observations only (no simulations).

It takes into account astrophysical uncertainties on:

- 3D distribution of baryons (stars+gas) in the Galaxy;
- weight of baryons with respect to total mass budget;
- Sun's galactocentric distance and
- observed RC.

Available at:

https://github.com/mariabenitocst/UncertaintiesDMinTheMW

It can be used in direct/indirect searches (e.g. GC/Galactic halo DM searches in gamma-rays, DM neutrinos searches, direct DM searches and local DM searches with antimatter).

How to determine DM density profile?

Rotation Curve method

Assumptions:

Rotationally supported

- Objects move in circular orbits around the GC
- The gravitational potential is axisymmetric

Only applies for R > 2.5 kpc

Face-on (upper) and side-on (lower) projection of the 3D density of the MW bulge Portail +

MNRAS 465 (2017)

How to reconstruct DM density profile in Galactic Bulge region?

locco & MB Physics of the Dark Universe 15 (2017)

Most of the galaxy's light comes from stars and gas in the galactic disk and central bulge

$(x,y,z) = (\pm 2.2, \pm 1.4, \pm 1.2) {\rm kpc}$

Total mass

 $M_{total} = (1.85 \pm 0.05) \times 10^{10} \,\mathrm{M_{\odot}}$

Portail + MNRAS 465 (2017) Stellar mass

 $M^i_* = \int_{how} \rho^i_*(x, y, z) \,\mathrm{d}V$

Methodology Allowed DM mass

$$M_{total} - M_*^i = M_{DM}^i$$
$$\sigma_{M_{DM}^i} = \sqrt{\sigma_{M_{total}}^2 + \sigma_{M_*^i}^2}$$

 $M_* = (1.1 - 1.7) \times 10^{10} M_{\odot}$ $M_{DM} = (0.1 - 0.7) \times 10^{10} M_{\odot}$

DM mass corresponds to 7-37%

Baryonic Morphology

gNFW density profile

$$\rho_{DM}(r) = \rho_0 \left(\frac{R_0}{r}\right)^{\gamma} \left(\frac{R_s + R_0}{R_s + r}\right)^{3-\gamma}$$

Study parameter space that gives a mass in excess or defect with respect to the allowed DM mass

Galactic Bulge Region - Results: varying bulge morphology

JSPS-FAPESP Workshop

Galactic Bulge Region - Results: varying bulge morphology

JSPS-FAPESP Workshop

Take away II

- Our ignorance about the morphology of the bulge and the normalisation of the visible component prevents strong conclusions on the DM distribution in the inner 2.5 kpc.
- Larger uncertainties for the slope of the profile (γ), DM distribution remain yet inconclusive.

ありがとう

Obrigada

mariabenitocst@gmail.com