BINGO Pipeline overview (BINGO forecasting for non-gaussian features

in 21cm intensity mapping)

Karin Fornazier - INPE

BINGO Pipeline

Leader: Filipe B. Abdalla (UCL)

TEAM: Jordany Vieira (PhD Student- IFUSP), Lucas Olivari (Pos-Doc-IFUSP), André Alencar da Costa (Pos-Doc IFUSP), Henrique Xavier (Pos-Doc UCL), Isabela Carruci (Pos-Doc UCL), Alessandro Marins (PhD Student- IFUSP), Priscilla Gutierres (Msc Student IFUSP-IME), Andrei Cuceu (PhD Student UCL)

J BINGO

TOPICS

Motivation

Intensity Mapping

BINGO

BINGO Pipeline

Bispectrum Module

SINGO

https://portal.if.usp.br/bingotelescope/

Motivation

The distribution of perturbations in the matter density supplies a wealth of information on the late-time evolution of the Universe on cosmological scales.

		Optical redshift surveys	re re	dshift z<1.5 \longrightarrow	BAO or RSDs	5
I'M BORED	large inte	gration times —	limits the number density of sources with observed redshifts and restricts the maximum radial distance			
		Photometric redshift surveys	h. to Share	higher number de and reach lar		
ГМВО		losing almost all the	e relevant ir	nformation in the rac	dial direction	

Intensity Mapping →

is based on measuring the radio emission from different patches of the sky and different frequencies.

INTENSITY MAPPING

Any pocket of neutral hydrogen will emit in the isolated 21cm line vobs = v21/(1 + z), where v21 = 1420.4 MHz \rightarrow rest-frame frequency of the 21cm line hyperfine spin-flip transition of the 1s ground state.

Probing dark energy with baryonic oscillations and future radio surveys of neutral hydrogen F. B. Abdalla S. Rawlings

Measuring the intensity of radio emission from different directions in the sky, it is in principle possible to trace 3D distribution of neutral hydrogen in the Universe

Intensity Mapping \rightarrow not to focus on measuring the flux of individual galaxies, but rather the combined emission arriving from relatively wide patches of the sky

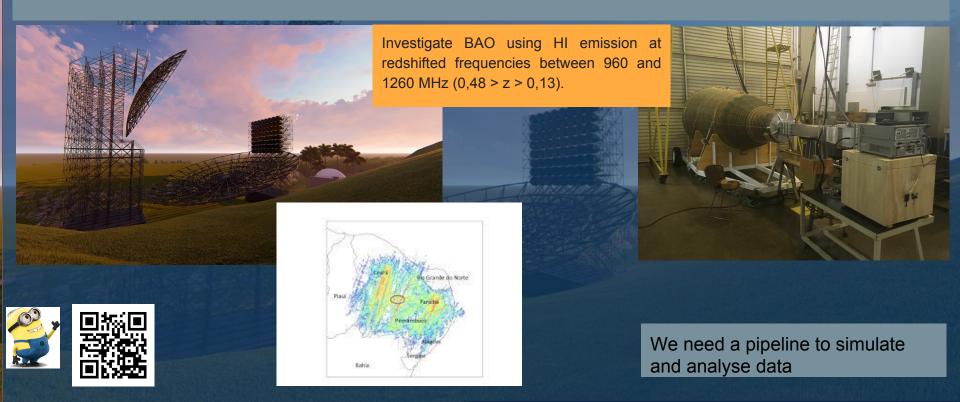
Jeff Peterson et al (https://arxiv.org/abs/0902.3091)

Battye R. A., Davies R. D., Weller J., 2004, Mon. Not. Roy. Astron. Soc., 355, 1339

BINGO

BINGO (Baryon Neutral Gas Acoustic Oscillation Observations)

radio telescope designed to make detections of Radio Acoustic Oscillations by means of radiofrequency.



C. A. Wuensche et al. https://arxiv.org/pdf/1803.01644.pdf FAPESI

BINGO Pipeline HIDE & SEEK_

HIDE (HI Data Emulator) & SEEK (Signal Extraction and Emission Kartographer) is a set of two independent software packages that simulate and analyze single-dish radio survey data.

HIDE forward models the entire radio survey system chain:

https://github.com/cosmo-ethz/hide

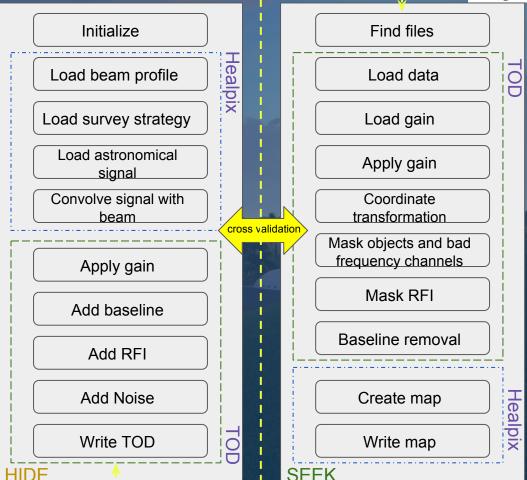
SEEK processes simulated (or observed) survey data

https://github.com/cosmo-ethz/seek

single-dish \rightarrow 1 horn

(Blaine Radiotelescopy)

HIDE & SEEK: End-to-End Packages to Simulate and Process Radio Survey Data <u>loel Akeret</u> et al, 2016



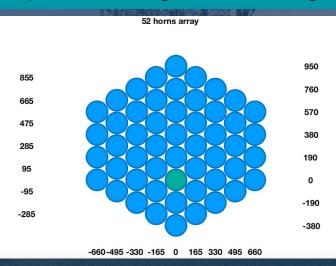
Pipeline HIDE & SEEK-4 BINGO

HIDE 4 BINGO:

https://bitbucket.org/lolivari/hide4bingo

SEEK 4 BINGO

https://bitbucket.org/lolivari/seek4bingo



Created on August, 2018 author: Lucas Olivari

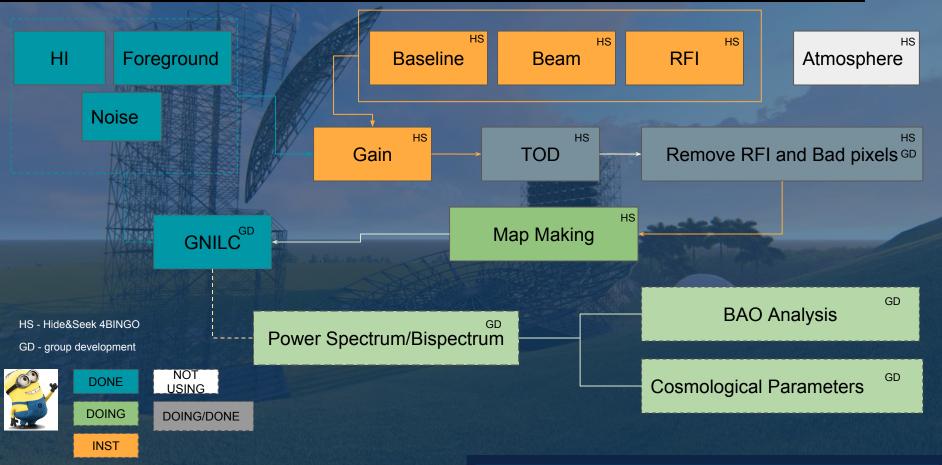
from __future__ import print_function, division, absolute_import, unicode_literals

from ivy.plugin.parallel_plugin_collection import ParallelPluginCollection

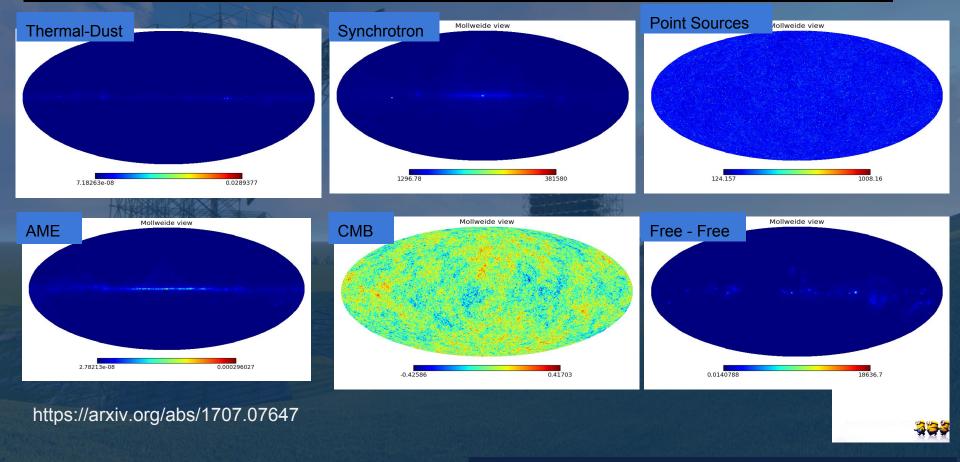
BINGO case double-dish \rightarrow many horns

Pipeline HIDE & SEEK-4 BINGO - SKY MODULE

Pipeline HIDE & SEEK-4 BINGO - Data Flow



Pipeline HIDE & SEEK-4 BINGO - Module Foregrounds



Pipeline HIDE & SEEK-4 BINGO - GNILC

 $GNILC \rightarrow Generalized$ Needlet Internal Linear Combination

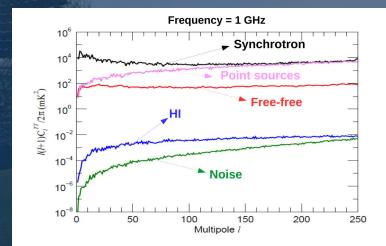
https://arxiv.org/abs/1707.07647

To perform any HI IM experiment we need to subtract the astrophysical contamination that will be present in the observed signal.

It is therefore important to quantify the potential contaminating effects of foreground residuals.

Uses both frequency and spatial information

ILC: weight matrix that offers unit response to the desired component (HI) while it minimizes the total variance of the other components



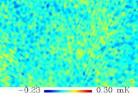
Pipeline HIDE & SEEK-4 BINGO - GNILC



GNILC: Results

GNILC HI

Input HI



Residuals: rms 0.04 mK

1) Decompose the temperature anisotropy into multipoles

 $a_{lm} = \int d \hat{\mathbf{n}} \frac{\Delta T}{T}(\hat{\mathbf{n}}) Y^*_{lm}(\hat{\mathbf{n}})$

2) The temperature can also be represented in terms of the primordial gravitational potential perturbation and the radiation transfer function

$$\frac{\Delta T}{T}(\hat{\mathbf{n}}) = \int \frac{d^3k}{(2\pi)^3} \sum_{l=0}^{\infty} (-i)^l (2l+1) \Psi(\mathbf{k}) \Delta_l(k) P_l(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}})$$

3) We replace the Legendre polynomial with it's spherical harmonic expansion

$$P_l(\hat{\mathbf{k}}\cdot\hat{\mathbf{n}}) = \frac{4\pi}{2l+1}\sum_{m=-l}^l Y_{lm}(\hat{\mathbf{k}})Y^*_{lm}(\hat{\mathbf{n}})$$

4) Substituting gives an expression for the multipoles in terms of the primordial gravitational potential perturbation and the radiation transfer function

$$a_{lm} = 4\pi (-i)^l \int \frac{d^3k}{(2\pi)^3} \Psi(k) \Delta_l(k) Y_{lm}^*(\hat{\mathbf{k}})$$

5) The bispectrum is the three point correlator of the alm 's

$$B_{l_1 l_2 l_3}^{m_1 m_2 m_3} = \langle a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3} \rangle$$

= $(4\pi)^3 (-i)^{l_1 + l_2 + l_3} \int \frac{d^3 \mathbf{k}_1}{(2\pi)^3} \frac{d^3 \mathbf{k}_2}{(2\pi)^3} \frac{d^3 \mathbf{k}_3}{(2\pi)^3} \langle \Psi(\mathbf{k}_1) \Psi(\mathbf{k}_2) \Psi(\mathbf{k}_3) \rangle$
 $\Delta_{l_1}(k_1) \Delta_{l_2}(k_2) \Delta_{l_3}(k_3) Y_{l_1 m_1}^*(\hat{\mathbf{k}}_1) Y_{l_2 m_2}^*(\hat{\mathbf{k}}_2) Y_{l_3 m_3}^*(\hat{\mathbf{k}}_3).$

6)The three point correlator of the primordial gravitational potential perturbation consists of a delta function and a shape function F which only depends on the magnitudes of the k's

 $\langle \Psi(\mathbf{k}_1)\Psi(\mathbf{k}_2)\Psi(\mathbf{k}_3)\rangle = (2\pi)^3 F(k_1,k_2,k_3)\delta(\mathbf{k}_1+\mathbf{k}_2+\mathbf{k}_3)$

7) We substitute and replace the delta function with its integral representation expanded in Bessel functions and spherical harmonics

$$\delta(\mathbf{k}) = \frac{1}{(2\pi)^3} \int e^{i\mathbf{k}\cdot\mathbf{x}} d^3x$$
$$e^{i\mathbf{k}_1\cdot\mathbf{x}} = 4\pi \sum_l i^l j_l(k_1x) \sum_m Y_{lm}(\hat{\mathbf{k}}_1) Y_{lm}^*(\hat{\mathbf{x}})$$

8) The bispectrum then splits into a geometric factor given by the Gaunt integral times the reduced bispectrum

$$B_{l_1 l_2 l_3}^{m_1 m_2 m_3} = \mathcal{G}_{m_1 m_2 m_3}^{l_1 l_2 l_3} b_{l_1 l_2 l_3}$$

8) The bispectrum then splits into a geometric factor given by the Gaunt integral times the reduced bispectrum

 $B_{l_1 l_2 l_3}^{m_1 m_2 m_3} = \mathcal{G}_{m_1 m_2 m_3}^{l_1 l_2 l_3} b_{l_1 l_2 l_3}$

$$\mathcal{G}_{m_1m_2m_3}^{l_1l_2l_3} = \int d\Omega \, Y_{l_1m_1}Y_{l_2m_2}Y_{l_3m_3} = \sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \begin{pmatrix} l_1 & l_2 & l_3 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix}$$

$$b_{l_1 l_2 l_3} = \left(\frac{2}{\pi}\right)^3 \int dx dk_1 dk_2 dk_3 (xk_1k_2k_3)^2 F(k_1, k_2, k_3) \Delta_{l_1}(k_1) \Delta_{l_2}(k_2) \Delta_{l_3}(k_3) j_{l_1}(k_1x) j_{l_2}(k_2x) j_{l_3}(k_3x).$$

Binned bispectrum estimator

Binned, or coarse-grained, pseudo-bispectrum \rightarrow full-sky spherical harmonic transforms \rightarrow masked sky \rightarrow recovered alm coefficients are a convolution of the real CMB multipole coefficients with the multipole coefficients of the mask.

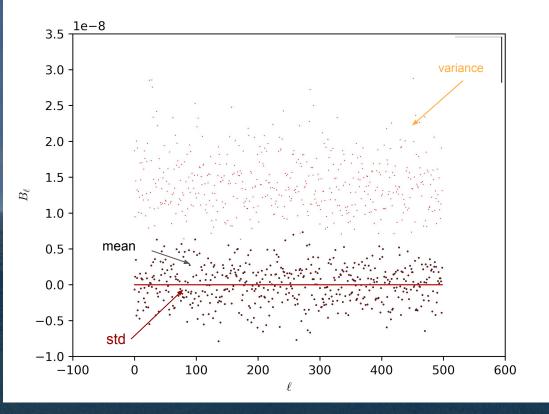
https://arxiv.org/abs/1509.0810

Goals \rightarrow Not only non-Gaussianity in CMB (as independent module) but, for BINGO case - non-gaussianity of Galaxies (21 cm)

Bispectrum module $\rightarrow\,$ by Test Driven Design $\rightarrow\,$ refactorate $\,$ and modulate the code

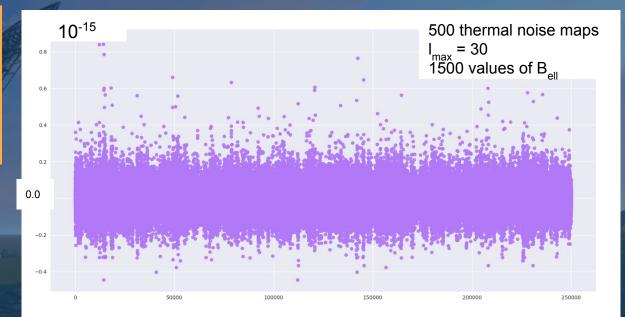
500 thermal noise maps $I_{max} = 30$

500 values $\rightarrow B_{ell}$ mean, std and variance



Capacity of all the available cores in the machine \rightarrow all the calculations simultaneously and we use text files to save the data of each iteration, then another module joined the pieces and can quickly calculate average and standard deviation in addition to plot the graphs

60 hours to approximately 8 hours



Next Steps

Pipeline

Improvement \rightarrow modules which depends on instrumental info BEAM, RFI, GAIN

Inclusion on machine learning studies in RFI

Bispectrum Module

Inclusion of ortho and local

Estimation of f_{NL}

Using FLASK - lognormal model

Comparison with data (not BINGO data yet)

Thank you

SINGO

https://portal.if.usp.br/bingotelescope/

Extras

SINGO

https://portal.if.usp.br/bingotelescope/

100

Gaussianity

Statistical Properties (primordial fluctuations): Quantum fluctuations get stretched and enhanced by inflation can be described by harmonic oscillators in their ground state and the distribution of those fluctuations is <u>Gaussian</u>

If the Universe is Gaussian, homogeneous and statistically isotropic, then essentially all the information about inflation and linear evolution of the Universe is encoded in the variance, or <u>two-point correlation</u> function of **LSS/CMB**.

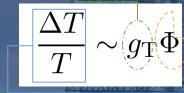
But it is not enough knowing the variance of the primordial fluctuations in order to single out which particular inflationary model was realized in our Universe \rightarrow we need the higher momenta of the distribution as well.

Model degeneracy \rightarrow go beyond the framework of \land CDM, Gaussian, spatially homogeneous and statistically isotropic Universe.

Non-Gaussianity

While inflation predicts Gaussian CMB fluctuations to very good accuracy, strictly speaking, non-linearity in inflation produces weakly **non-Gaussian fluctuations**, which propagates through CMB

radiation transfer function



curvature perturbations, Φ

CMB anisotropy, $\Delta T / T$

$$\frac{\Delta T}{T} \sim g_{\rm T} \left[\Phi_{\rm L} + \left(f_{\Phi} + g_{\Phi}^{-1} f_{\delta\phi} + g_{\Phi}^{-1} g_{\delta\phi}^{-1} f_{\eta} \right) \Phi_{\rm L}^2 \right]$$

Even if Φ is Gaussian, ΔT /T can be non-Gaussian \rightarrow general relativistic cosmological perturbation theory:

$$\frac{\Delta T}{T} \sim g_{\rm T} \left(\Phi + f_{\Phi} \Phi^2 \right)$$

higher-order correction (2nd perturbation theory)

$$\Phi(\mathbf{x}) = \Phi_{\mathrm{L}}(\mathbf{x}) + f_{\mathrm{NL}} \left[\Phi_{\mathrm{L}}^{2}(\mathbf{x}) - \left\langle \Phi_{\mathrm{L}}^{2}(\mathbf{x}) \right\rangle \right]$$