FAPESP-JSPS workshop

Feb. 20th, 2019

Systematic Study of Protoclusters based on Wide-field Imaging

Toshikawa, et al. (2018, PASJ, 70, S12) Uchiyama, et al. (2018, PASJ, 70, S31)

Jun Toshikawa (ICRR, Univ. of Tokyo) Hisakazu Uchiyama, Nobunari Kashikawa, Masami Ouchi, Roderik Overzier, et al.

Importance of galaxy clusters

1. The relation of structure formation of the universe

Galaxy clusters form in the densest peaks of dark matter. They can be used to estimate cosmological parameters.

Importance of galaxy clusters

2. Environmental effects on galaxy evolution

From observations, it is proved that galaxy clusters have distinct properties: morphology-density relation (Dressler 1980),

red sequence (Visvanathan & Sandage 1977).

Importance of protoclusters When and how are galaxy clusters formed?

Protoclusters in the early universe would reveal the primordial condition of clusters at their birth.

Springel et al. (2005)

Importance of protoclusters When and how are galaxy clusters formed?

Protoclusters in the early universe would reveal the primordial condition of clusters at their birth.

Problem: Protoclusters are very rare...

Where are protoclusters?

Most of previous works are searching for protoclusters around QSOs and radio galaxies. **Are these galaxies really good probes of protoclusters?**

Where are protoclusters?

Most of previous works are searching for protoclusters around QSOs and radio galaxies. **Are these galaxies really good probes of protoclusters?**

Wide-field Survey

We perform an unbiased search of protoclusters by using wide-field imaging of HSC survey.

Hyper Suprime Camera (HSC) on Subaru telescope

- 1.7 deg² FoV (104 CCDs)

- 5 broad-bands (*g*, *r*, *i*, *z*, *y*) and many narrow-bands

HSC Subaru Strategic Program (HSC SSP) (300 nights in 2014-2019)

1. select high-redshift galaxies by Lyman break technique

- 1. select high-redshift galaxies by Lyman break technique
- 2. count galaxies within an aperture aperture size corresponds to expected protocluster size

- 1. select high-redshift galaxies by Lyman break technique
- 2. count galaxies within an aperture aperture size corresponds to expected protocluster size
- 3. distribute apertures over whole area

- 1. select high-redshift galaxies by Lyman break technique
- 2. count galaxies within an aperture aperture size corresponds to expected protocluster size
- 3. distribute apertures over whole area
- 4. calculate the average and dispersion of galaxy number in an aperture

- 1. select high-redshift galaxies by Lyman break technique
- 2. count galaxies within an aperture aperture size corresponds to expected protocluster size
- 3. distribute apertures over whole area
- 4. calculate the average and dispersion of galaxy number in an aperture

5. overdesity is defined by (N-N_{ave})/ σ

 $\frac{1}{\text{Overdensity }(\sigma)}$

3

4

_1

- 1. select high-redshift galaxies by Lyman break technique
- 2. count galaxies within an aperture aperture size corresponds to expected protocluster size
- 3. distribute apertures over whole area
- 4. calculate the average and dispersion of galaxy number in an aperture

5. overdesity is defined by (N-N_{ave})/ σ

Based on the initial data of the HSC survey, we have searched protoclusters at z~4 in 121deg² area.

5

Search for Protoclusters at *z***~4 in Wide layer**

The same analysis applies to a theoretical model

 \rightarrow the relation between overdensity and descendant halo mass at z=0.

Protocluster candidates are defined as regions with >4 σ at the peak.

Serdensity map

Wideo AMAISHO O OOO BA (Oppose Cpc)

Clustering of protoclusters

We have estimated angular correlation function at $z\sim4$ for the first time.

Clustering of protoclusters

We have estimated angular correlation function at $z\sim4$ for the first time.

this study

Relation between protoclusters and QSOs

Relation between protoclusters and QSOs

There is no significant difference between QSOs and g-dropout galaxies. → QSOs do not tend to reside in high dense environments.

Summary

- We have searched protoclusters in the 121deg² area of the HSC-WIDE.
- 179 protocluster candidates at $z\sim4$ are identified.
- Clustering analysis was applied for the first time.
- The spatial distribution (r_0 -n) is consistent with the prediction of ΛCDM .
- The dark matter halo mass is found to be $2 \times 10^{13} M_{sun}$.
- QSOs do not tend to be located in high dense environments.

This study will expand into wide redshift range to trace redshift evolution.