The DarkSide Experiment: Venturing into the Low Mass Region

Ivone F. M. Albuquerque IFUSP Fapesp - JSPS Workshop São Paulo - Feb 18-20th - 2019

Outline

- I. DarkSide Liquid Argon Program
- 2. DS50k Dual Phase TPC
- 3. Recent Results (DS50k)
 - WIMP search
 - Low Mass Search
 - SubGeV Search

4. Proto, DS20K and Beyond

DM Search: LAr Program

DS-50

50 Kg LAr 532 days DATA

Infin Laboratori Nazionali del Gran Sasso

 $DS-10 \rightarrow 10 \text{ kg}$ $DS-50 \rightarrow 50 \text{ kg}$ $DS-Proto \rightarrow \sim 1 \text{ ton}$ $DS-20K \rightarrow \sim 20 \text{ ton}$ $ARGO \rightarrow \sim 200 \text{ ton}$

Global Argon DM Coll ArDM, DEAP3600 DS-20K

Liquid Argon Dual Phase Time Projection Chamber (TPC)

(46.4 +- 0.7) Kg Fiducial volume: (36.9 +- 0.6) Kg

Ivone Albuquerque - IFUSP

Dual Phase TPC

S1: prompt scintillation signal Pulse Shape Discrimination (elec vs nucl recoil) S2: secondary scintillation (ionization) light fraction in each PMT: XY reconstruction Time difference: Z position + background rejection

Time Projection Chamber (TPC)

DS50 Dual Phase TPC

Backgrounds

Nuclear Recoils neutrons (radiogenic, alphas) same recoil as Wimps Electron Recoils electrons gammas (β and γ decays in TPC and Cryostat)

Ivone Albuquerque - IFUSP

Pulse Shape Discrimination in LAr

Powerful only for LAr

Detector Shielding

DS50k 532.4 days

Blind analysis

blind enlarged box containing
 WIMP search region
 in the a F90 vs S1 parameter space
 (at event reconstruction level)

• model BG events: calibration data and MC tuning

 Refine cuts based on leakage BG events (≤ 0.1 events total)

- Test **BG models o**n outer strip of blind box
 - Unblind WIMP region

DarkSide WIMP Search

DS50K Coll - PRD 98 (2018)

Current SI WIMP limits

Ivone Albuquerque - IFUSP

Low Mass Motivation

Asymmetric Dark Matter

 $rac{
ho_{
m DM}}{
ho_{
m Baryons}}\sim 5$

No connection in standard WIMP scenario

-- ρ_{DM} is set by freeze out temperature

However a connection arises when

$$rac{
ho_{\chi}}{
ho_{\overline{\chi}}}
eq \mathbf{1}$$

$$(\mathbf{1} \leq \mathbf{m}_\chi \leq \mathbf{10}) \,\, \mathbf{GeV/c^2}$$

Zurek Phys. Reports 537, 2016

Low Mass Analysis

$(1 \leq \mathrm{m}_\chi \leq \mathrm{10}) ~\mathrm{GeV/c}^{2}$

S2 only analysis

- Scintillation light (S1) is too low => not detectable
 - Give up Pulse Shape Discrimination

S2 Single Electron Yield

- Signal down to single electron
- approximately 23 PE/e⁻ at detector axis

S2 Only Analysis - Ar³⁷

direct N_e calibration for low energy electrons

Ionization Yield (Q_y) from Nuclear Recoils

.4 MeV γ signal in veto required

only 4 farthest PMTs

G4DS uses Bezrukov model (Bezrukov et al., Astropart.Phys. 35 (2011)

Ionization Yield (Q_y) from Nuclear Recoils

Q_y from AmBe + AmC + Bezrukov model Agree within bounds with other data => systematics

Low Mass Wimps: Signal vs Backgrd

Expected signal assumes standard DM halo Uncertainties in signal dominated by Q_y fluctuations

Low Mass Wimps: Limits

DS50K Coll - PRL 121 (2018)

SubGeV Search

DARK SECTOR

- Hidden sector with not only one DM particle, but multiple particles and forces
- Portals connecting with Standard Model particles

Also an S2 only analysis

DM - electron scattering

SubGeV Analysis

 DM-electron interaction parametrized by a DM form factor with two limiting values (heavy and light mediator)

$$F_{\rm DM}(q)|^2 = \begin{cases} 1, & m_{\rm med} \gg \alpha m_e \\ \left(\alpha m_e/q\right)^4, & m_{\rm med} \ll \alpha m_e \,, \end{cases}$$

SubGeV Limits

DS50K has best result 25 -100 MeV region

DS50K Coll - PRL 121 (2018)

10⁻³³

10⁻³⁴

10⁻³⁵

10-36

10

10³

 $\propto 1/q^2$

10²

 $m_{\chi} [MeV/c^2]$

DarkSide-50

ENON100 NON10

LAr Program: Beyond DS50

- Assembly and test of DS20k cryostat
 Tests of SiPM
- CERN

PROTO

DS20k

- 50 ton UAr Dual Phase TPC (30 ton fiducial)
- SiPM
- Background free (<0.1/100 ton year)
- Data from 2022

ARGO Coll

• 300 ton LAr

Near Future Sensitivities

5σ Sensitivity

