Determining the distribution of Dark Matter in the Milky Way

ICTP-SAIFR IFT-UNESP São Paulo

International Centre for Theoretical Physics South American Institute for Fundamental Research *FAPESP-JSPS meeting* 18/2/2019, São Paulo

Dark Matter Evidence over large range of scales

A story of LCDM I: structure formation

age of Universe

A story of LCDM II: the single halo

A "universal" DM profile?

NAVARRO-FRENK-WHITE

$$\rho(R) \propto \frac{R_s}{R} \left(1 + \frac{R}{R_s} \right)^{-2}$$

A story of LCDM III: the dark matter distribution

generalized NFW

$$\rho_{DM}(R) \propto \rho_0 \left(\frac{R}{R_s}\right)^{-\gamma} \left(1 + \frac{R}{R_s}\right)^{-3+\gamma}$$

A story of LCDM IV: the small scale problems

Cusp vs core

Missing satellite

Ask me later, if interested

The DM distribution in astrophysical sources a "universal" profile (?)

And now for something completely different: the Milky Way

The road to Zeus' home on Olympus The sacred path of Iberian pilgrims An average-sized 10^12 Msun spiral, but the truth is

DM density at the Sun = ? (the path to Stockholm goes through the skies)

Determining the relevant astrophysical quantities Local DM density

Local determination of ρ_0

Vertical motion of stars, determining the whole local potential

Local determination of ρ_0

Subtracting local baryonic (stellar) contribution to get DM (no implicit assumption on DM presence)

Inferring the DM density structure

Fitting a pre-assigned shape on top of luminous

[many autors, e.g. Iocco et al. 2011]

$$g \mathsf{NFW}$$

$$\rho_{DM}(R) \propto \rho_0 \left(\frac{R}{R_s}\right)^{-\gamma} \left(1 + \frac{R}{R_s}\right)^{-3+\gamma}$$

$$\rho_{DM}(R) \propto \rho_0 \exp\left[-\frac{2}{\gamma} \left(\left(\frac{R}{R_s}\right)^{\gamma} - 1\right)\right]$$
Einasto

Global determination of $\rho(r)$

Fitting a DM profile to the Rotation Curve, on top of other components

Underlying assumption on DM presence and distribution shape

The case of the Milky Way

Courtesy of Miguel Pato

Dark Matter in the Milky Way: a purely observational approach

Fabío Iocco

Work started with: *Míguel Pato, G. Bertone* And continued with: *María Beníto, Ekaterína Karukes*

The case of the Milky Way: ingredients

- The observed rotation curve
- The "expected" rotation curve
- Some "grano salis"
- Working hypothesis (later on)

The Milky Way: testing expectactions (with no additional assumptions)

[Iocco, Pato, Bertone, Nature Physics 2015]

The case of the Milky Way: the question

$$\Phi_{\text{tot}} = \Phi_{\text{bulge}} + \Phi_{\text{disk}} + \Phi_{\text{gas}} ??$$

[can the observed, luminous components make up to the whole gravitational potential?]

$$v_c^2 = r rac{d \phi_{
m tot}}{dr}$$

Rotation curve as a tracer of the total potential

...and if not...

The Milky Way: observed rotation curve II. tracers

Doppler shift 1. gas (21cm, Hα, CO) 2. stars (H, He, O,) 3. masers (H ₂ O, CH ₃ OH,)	distance 1. terminal velocities 2. photo-spectroscopy 3. parallax	(gas) (stars) (masers)
---	--	------------------------------

The Milky Way: observed rotation curve III. curve

Data compilation by [Sofue et al, '08]

The Milky Way: observed rotation curve II'. data again (a new compilation)

	Object type	$R \; [kpc]$	quadrants	# objects
	HI terminal velocities			
	Fich+ '89	2.1 - 8.0	1,4	149
	Malhotra '95	2.1 - 7.5	1,4	110
	McClure-Griffiths & Dickey '07	2.8 - 7.6	4	701
	HI thickness method			
	Honma & Sofue '97	6.8 - 20.2	-	13
	CO terminal velocities			
	Burton & Gordon '78	1.4 - 7.9	1	284
	Clemens '85	1.9 - 8.0	1	143
gas	Knapp+ '85	0.6 - 7.8	1	37
0	Luna+ '06	2.0 - 8.0	4	272
	HII regions			
	Blitz '79	8.7 - 11.0	2,3	3
	Fich+ '89	9.4 - 12.5	3	5
	Turbide & Moffat '93	11.8 - 14.7	3	5
	Brand & Blitz '93	5.2 - 16.5	1,2,3,4	148
	Hou+ '09	3.5 - 15.5	1,2,3,4	274
	giant molecular clouds		, , ,	
	Hou+ '09	6.0 - 13.7	1,2,3,4	30
	open clusters			
	Frinchaboy & Majewski '08	4.6 - 10.7	1,2,3,4	60
	planetary nebulae			
	Durand+ '98	3.6 - 12.6	1,2,3,4	79
atoma	classical cepheids			
stars	Pont+ '94	5.1 - 14.4	1,2,3,4	245
	Pont+'97	10.2 - 18.5	2,3,4	32
	carbon stars			
	Demers & Battinelli '07	9.3 - 22.2	1,2,3	55
	Battinelli+ '13	12.1 - 24.8	1,2	35
	masers			
	Reid+ '14	4.0 - 15.6	1,2,3,4	80
	Honma+ '12	7.7 - 9.9	1,2,3,4	11
masers	Stepanishchev & Bobylev '11	8.3	3	1
	Xu+ '13	7.9	4	1
	Bobyley & Bajkova '13	4.7 - 9.4	1,2,4	7

The Milky Way: observed rotation curve IV. public tool: galkin

Customizable galactic parameters (R_0, V_0) peculiar motions, etc...

Finally available: download your copy now

github.com/galkintool/galkin

[Pato & FI, arXivV:1703.00020 , Software X (2017)]

		enter	input p	arameters		
galactic parameter	galactic parameters					
R0 [kpc]=	8.0	V0 [km/s]=	230.0	syst [km/s]=	0.0	
Usun [km/s]=	11.10	Vsun [km/s]=	12.24	Wsun [km/s]=	07.25	
data to use						
 HI terminal w Fich+ 89 Malhotra 9 McClure-0 HI thickness Honma & CO terminal w Burton & 0 Clemens & Knapp+ 8 Luna+ 06 HII regions Blitz 79 Fich+ 89 Turbide & Brand & B Hou+ 09 	elocities (Table 2) 95 Griffiths & Sofue 97 velocities Gordon 7 85 35 (Table 1) & Moffat 9 litz 93 (Table A)	& Dickey 07 8 3		 open clusters Frinchaboy planetary nebi Durand+ 9 classical cephi Pont+ 94 Pont+ 97 carbon stars Demers & I Battinelli+ masers Reid+ 14 Honma+ 1 Stepanishc Xu+ 13 Bobylev & I 	v & Majewski 08 ulae 98 eids Battinelli 07 • 12 2 hev & Bobylev 11 Bajkova 13	
giant molecu	lar cloud (Table A2	s !)				

The Milky Way Rotation Curve as observed

All tracers, optimized for precision between R=3-20 kpc

Modeling the Milky Way: morphological observations

The Milky Way: expected rotation curve

$\Phi_{\text{baryon}} = \Phi_{\text{bulge}} + \Phi_{\text{disk}} + \Phi_{\text{gas}}$

$$ho_i(x,y,z) o \phi_i(r, heta,arphi) o v_{c,i}^2(R) = \sum_arphi R rac{d\phi_i}{dr}(R,\pi/2,arphi)$$

Constructing the curve expected from observed mass profiles

The Milky Way: expected rotation curve 1. the baryonic components

The luminous Milky Way: observations of morphology

2. BARYONS: ST	ELLAR BULGE	•	•			
$ ho_{ ext{bulge}}= ho_0f(x,y,z)$						
morphology $f(x, y, z)$						
Stanek+ '97 (E2)	e^{-r}	0.9:0.4:0.3	24°	optical		
Stanek+ '97 (G2)	$e^{-r_{s}^{2}/2}$	1.2:0.6:0.4	25°	optical		
Zhao '96	$e^{-r_s^2/2} + r_a^{-1.85}e^{-r_a}$	1.5:0.6:0.4	20°	infrared		
Bissantz & Gerhard '02	$e^{-r_s^2}/(1+r)^{1.8}$	2.8:0.9:1.1	20°	infrared		
Lopez-Corredoira+ '07	Ferrer potential	7.8:1.2:0.2	43°	infrared/optical		
Vanhollebecke+ '09	$e^{-r_s^2}/(1+r)^{1.8}$	2.6:1.8:0.8	15°	infrared/optical		
Robin+ '12	$\mathrm{sech}^2(-r_s)+e^{-r_s}$	1.5:0.5:0.4	13°	infrared		

normalisation ρ_0 microlensing optical depth: $\langle \tau \rangle = 2.17^{+0.47}_{-0.38} \times 10^{-6}$, $(\ell, b) = (1.50^{\circ}, -2.68^{\circ})$ (MACHO '05) The luminous Milky Way: observations of morphology

2. BARYONS: STELLAR DISK						
	$ ho_{ m disk}= ho_0f(x,y,z)$					
morphology $f(x, y, z)$						
Han & Gould '03	$e^{-R} \mathrm{sech}^2(z) \ e^{-R- z }$	2.8:0.27 2.8:0.44	$_{ m thin}$	optical		
Calchi-Novati & Mancini '11	$e^{-R- z } e^{-R- z }$	2.8:0.25 4.1:0.75	thin thick	optical		
deJong+ '10	$e^{-R- z } e^{-R- z } (R^2+z^2)^{-2.75/2}$	2.8:0.25 4.1:0.75 1.0:0.88	thin thick halo	optical		
Jurić+ '08	$e^{-R- z } e^{-R- z } (R^2 + z^2)^{-2.77/2}$	2.2:0.25 3.3:0.74 1.0:0.64	thin thick halo	optical		
Bovy & Rix '13	$e^{-R- z }$	2.2:0.40	single	optical		

normalisation ρ_0

local surface density: $\Sigma_* = 38 \pm 4 M_{\odot}/pc^2$ [Bovy & Rix '13]

The luminous Milky Way: observations of morphology

2. BARYONS: GAS $n_{\mathrm{H}} = 2n_{\mathrm{H}_2} + n_{\mathrm{HI}} + n_{\mathrm{HII}}$ morphology $M_{gas} \sim 7 \times 10^5 \, \mathrm{M_{\odot}}$ Ferrière '12 $r < 0.01 \; \mathrm{kpc}$ CO, 21cm, H α , ... CMZ, holed disk Ferrière+ '07 $r = 0.01 - 2 \; \rm kpc$ H_2 CO ΗI CMZ, holed disk 21cm ΗII warm, hot, very hot disp. meas. Ferrière '98 $r = 3 - 20 \; \rm kpc$ molecular ring H_2 CO cold, warm ΗI 21cm ΗII warm, hot disp. meas., $H\alpha$ Moskalenko+ '02 r = 3 - 20 kpc molecular ring H_2 CO ΗI 21cm ΗII disp. meas.

uncertainties

CO-to-H₂ factor: $X_{\rm CO} = 0.25 - 1.0 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s for } r < 2 \text{ kpc}$ $X_{\rm CO} = 0.50 - 3.0 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s for } r > 2 \text{ kpc}$

[Ferrière+ '07, Ackermann '12]

The luminous Milky Way: expected rotation curve

The Milky Way: testing expectactions

The Milky Way: testing expectactions (with no additional assumptions)

[Iocco, Pato, Bertone, Nature Physics 2015]

The Milky Way: testing expectactions (with no additional assumption) ((and some technical detail))

The Milky Way: testing expectactions (with no additional assumptions) ((and some technical detail))

- Computing the "badness-of-fit" (discrepancy) of each baryon rot. curve (no DM!!) to observed one
- One COULD bin (and we have done it) but loss of information: using 2D chi-square (uncertainties on R, as well)

$$\chi^{2} = \sum_{i=1}^{N} d_{i}^{2} \equiv \sum_{i=1}^{N} \left[\frac{(y_{i} - y_{b,i})^{2}}{\sigma_{y,i}^{2}} + \frac{(x_{i} - x_{b,i})^{2}}{\sigma_{x,i}^{2}} \right]$$

Do the baryon-only curves fit with the observed RC?

Every single model above 5 σ , already at R<R₀!!

[Iocco, Pato, Bertone, Nature Physics 2015]

Motivating dark haloes

 $v_{\text{Residual}} = (v_{\text{tot}}^2 - v_{\text{bar}}^2)^{1/2}$

There's more than you are usually told: visible morphology is uncertain (and don't forget the dependence on Gal Parameters)

Systematic uncertainties (luminous component)

[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017]

[Iocco, Pato, Bertone, Nature Physics 2015]

Extracting the DM density structure

Is our measurement correct? Our instrument is very precise. Is it accurate?

[E. Karukes, M. Benito, F. Iocco, A. Geringer-Sameth, R. Trotta] arXiv:1901.02463 full Bayesian framework

About the Galactic Center: assumptions for Rotation Curve method fail

Figure 1: Constraints in the gNFW parameter space, for an assigned value of $R_s=20$ kpc. Different panels show the result of changing bulge morphologies. The disc component is fixed to [26].

[Iocco & Benito, PDU 2017, arXiv:1611.09861]

Adopting different technique, in a baryon dominated region: huge uncertainties on determination of slope "gamma"

The Milky Way: observed rotation curve I. principles

$$v_{ ext{LSR}}^{ ext{l.o.s.}} = \left(rac{v_c(R')}{R'/R_0} - v_0
ight) \cos b \sin \ell$$

observing tracers from our own position, transforming into GC-centric reference frame

Cuncta stricte

- The existence of a gravitational/non-EM interacting species is solid on vaste range of scales.
- The Milky Way is one excellent probe of the above, among others.
- It is possible to determine the distribution of DM in the Milky Way, with a data-only-driven methodology.
- Systematics over the visible component of the Milky Way are one of the major sources of uncertainty, yet not the only.
- The local DM density is reconstructed with remarkable precision and accuracy.
- Effects of all the above on the determination of new physics: Maria Benito's talk on Wednesday

"Mom look, no hands!" A non-parametric reconstruction of the DM profile

[Pato & FI, 2015]

The Milky Way: observed rotation curve I. principles

$$v_{ ext{LSR}}^{ ext{l.o.s.}} = \left(rac{v_c(R')}{R'/R_0} - v_0
ight) \cos b \sin \ell$$

observing tracers from our own position, transforming into GC-centric reference frame

It is well known that uncertainties affect Direct Detection

Current LUX limits, varying astrophysical uncertainties

But do Galactic uncertainties affect PP, for real?

$$J_{annih} \propto \int_{los} \rho^2(r) dV$$

It is well known that uncertainties affect inDirect (some more, some less) and its interpretation

Let's quantify this effect in a specific case: Singlet Scalar DM

$$V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 S^2 + \lambda_S S^4 + \lambda_{HS} |H|^2 S^2$$

$$egin{aligned} v_H &= 246 ext{ GeV } \langle S
angle &= 0 \ m_S^2 &= 2\,\mu_S^2 + \lambda_{HS}\,v_H^2 \end{aligned}$$

"Wimp phenomenology" entirely dictated by the Higgs coupling and physical DM mass.

Constraints and interplay of experiments

Constraints and interplay of experiments

$$V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 S^2 + \lambda_S S^4 + \lambda_{HS} |H|^2 S^2$$

Let's look at the effect of astrophysics uncertainties: Direct Detection

Let's look at the effect of astrophysics uncertainties: Direct Detection

Let's look at the effect of astrophysics uncertainties: Indirect Detection

Cuncta stricte

- The existence of a gravitational/non-EM interacting species is solid on vaste range of scales.
- Astrophysics and Cosmology are in very good agreement with the scenario of a warm/cold particle constituting the backbone of cosmic structures.
- We are still ignorant over the very nature of this particle(s), but there's plenty of options.
- We are starting now to achieve sensitivity with a host of probes (not only colliders) on the core region of one of the most popular scenarios.
- Astrophysical uncertainties are actually affecting determination of PP, in virtuous interplay with collider physics, direct and indirect probes.
- Much to learn ahead, from Earth and Skies. Working together.

Advertisement

ICTPInternational Centre for Theoretical PhysicsSAIFRSouth American Institute for Fundamental Research

São Paulo (not Rio!), Brazil

School on DM and neutrinos July 23-August 3, 2018

http://www.ictp-saifr.org/school-on-dark-matterand-neutrino-detection/

Alright: Google it

Advertisement

ICTPInternational Centre for Theoretical PhysicsSAIFRSouth American Institute for Fundamental Research

São Paulo (not Rio!), Brazil

• Second South American DM workshop November 21-23, 2018

http://www.ictp-saifr.org/DMw2018