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How	can	we	obtain	a	complete	and	
accurate	catalog	of	quasars	in	the	

context	of	narrow-band	filter	surveys?	
	

Can	we	retrieve	robust	redshiU	
probability	distribu6ons	for	the	

quasars?	
	

By	employing	our	tools,	what	kind	of	
proper6es	can	we	derive	for	the	quasar	

candidates?	
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Source 3C273 at z = 0.158 
(Credit: ESA/Hubble) 

Quasi-stellar	
objects:	
Strange	radio	
sources	
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 SMBH
accretion disc                       
axisymmetry   [Urry & Padovani 1995] 

The	unified	model	of	AGNs	
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Cosmology	with	quasars	

Most	luminous	
types	of	AGNs:		
	
they	can	be	
detected	at	large	
distances!	
	
	

Inhabit	the	
centers	of	very	
massive	DM	

halos:		
probe	condi6ons	

in	the	early	
Universe!	

Map	structures	
on	the	largest	

scales:	
non-Gaussiani6es,	

constrain	
cosmological	
parameters…	

Active phase may be present in every galaxy’s lifetime!



Galaxy,	star	or	quasar?	



Galaxy,	star	or	quasar?	



Galaxy,	star	or	quasar?	



Galaxy,	star	or	quasar?	



Pstar 

type zphoto

σz 

P (z)

Classification

Photo-z estimation

Cosmology

type

Pgalaxy Pqso 

(random	decision	forest)	

(linear	combina6on	of	
QSO	eigenspectra)	

{mα,k}     {fα,k}
(observa6on:	k	point-like	

source	in	{α})	
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14,000	deg2	of	Southern	sky	
2	deg2	fov	camera	

0.80	m	telescope	(T80-S)	
Cerro	Tololo,	Chile	

Photometry:	5	BB	+	7	NB	
First	Data	Release	(80	fields	in	

Stripe	82)	

S-PLUS:	Southern	
Photometric	Local	Universe	
Survey		
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5 SDSS-like ugriz
7 narrow-band filters

S-PLUS	photometric	system	

Vanden Berk composite quasar 
spectrum at different z’s
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5 SDSS-like ugriz
7 narrow-band filters

S-PLUS	photometric	system	

Main quasar emission lines at 
different z’s 
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Quasar	iden$fica$on:	
S-PLUS	DR1	

Machine	learning	
	(in	collabora6on	w/	Eloi	Patarro):		

Random	forest	algorithm	
Training	sets	with	synthe6c	fluxes	
Probability	 that	 any	 given	 point-like	
source	is	a	star,	galaxy	or	quasar	
	

Sample	test:	
61,717	point-like	sources	in	Stripe-82	
region	w/	spectroscopic	match	
15	<	r	<	22	/	CLASS	=	6	/	PhotoFlag	<	3	
7,404	quasars	
	

stars	 gals/qsos	

qsos	

★	hnps://datalab.noao.edu/splus/index.php	
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Classifica$on	quality	

Completeness:	 Purity:	

Fotopoulou & Paltani: CPz

the paper:

P =
TP

TP + FP
. (2)

Recall Fraction of truly positive predictions, also referred to as
completeness in astronomy which we will also adopt for the rest
of the paper:

R =
TP

TP + FN
. (3)

F1 measure Harmonic mean of precision and recall:

F1 = 2 · P · R
P + R

. (4)

Fall-out Fraction of FP over negative predictions:

F =
FP

TN + FP
. (5)

A good classifier will have high accuracy, precision, recall
and F1 measure and low fall-out.

2.3. Template fitting

With template fitting methods a selection of theoretical or em-
pirical models are confronted first with the response function
of the telescope creating a flux library (fluxtemp) and then with
the data (fluxobs). Through a maximum likelihood approach the
best model representing the data is selected. When the uncertain-
ties in the data (�2

obs) follow a Gaussian distribution, the maxi-
mum likelihood approach is equivalent to selecting the model
with minimum �2 defined as:

�2 =

NX

i

( f luxobs,i � ↵ · f luxtemp,i)2

�2
obs,i

, (6)

where N is the number of data-points (filters) and ↵ the scaling
factor that minimizes the �2 value. The significant advantage of
template fitting over machine learning methods for the particular
application of photometric redshift estimation is that template
fitting can recover redshift solutions that are outside the training
sample used for machine learning (e.g., high redshift galaxies).

2.4. Photometric redshift quality

We introduce here also the two measures of quality of the pho-
tometric redshift estimation.

Accuracy, � The photometric redshift accuracy (�) is usually
defined in the literature as the normalized median absolute devi-
ation (NMAD) (Ilbert et al. 2009):

�NMAD = 1.48 ⇥ median
⇣ |zphot � zspec|

1 + zspec

⌘
. (7)

The usage of �NMAD is preferred over the standard deviation
because the median is less sensitive to extreme values, while
the scale factor 1.48 is introduced to allow the interpretation of
�NMAD as the the standard deviation of normally distributed data.

Catastrophic outliers, ⌘ For a number of sources the photomet-
ric redshift is wrong. Usually referred to as catastrophic outliers
(⌘), they are quantified as the percentage of sources for which
eq. (8) holds.

|zphot � zspec| > 0.15 · (1 + zspec). (8)

3. The CPz method

The CPz consists of three main stages shown in Fig. 1. Stage I
is the collection of the information on the flux and morphology
of the sources and the subsequent photometric redshift estima-
tion using template fitting. Stage II is the classification using
three RFs to identify the A) probability of being a star, B) op-
timal photometric redshift setup and C) probability of being a
photometric redshift outlier, given the colors, �2 values from the
template fitting step and morphology estimates (in our case the
half-light radius). Finally, Stage III consists of the consolidation
phase, during which a source is assigned a photometric redshift
solution and i) probability to be a star, ii) probability for the red-
shift to be wrong (eq. 8). We will describe the details behind
each processing step by applying the method on the near-infrared
VIKING and VIDEO Public VISTA Surveys cross matched with
the CFHTLS, KiDS and SDSS optical surveys.

3.1. Stage I: catalogs and template fitting

Stage one of the CPz method consists of collecting information
on the morphology (e.g., FWHM, half radius) and flux measure-
ments and the spectral energy distribution (SED) model fitting.
At this stage, all �2 estimates of the best fitting model per library
are saved and propagated into the pre-processing.

3.1.1. Photometric surveys

Modern extragalactic surveys profit from multiwavelength cov-
erage from the ultra-violet to the mid-infrared, which allows for
the estimation of good quality photometric redshifts. Future sur-
veys for example with Euclid and LSST will provide photometry
from the u-band up to the H-band with continuous coverage in
wavelength. To test our method in comparable conditions of Eu-
clid plus LSST, we use the ESO near-infrared Public VISTA sur-
veys 2 (Arnaboldi et al. 2007) using the z, Y, J, H, and K photo-
metric filters. We are using both the VIKING (Jlim,AB = 22.1, PI
W. Sutherland) and VIDEO (Jlim,AB = 24.5, PI M. Jarvis) surveys
in order to benefit from the large area coverage and the depth, re-
spectively. Euclid observations will not have a K-band coverage,
therefore we will also discuss the impact of this particular filter
on our results. The optical wavelength coverage (filters u, g, r,
i, z) is from the SDSS survey (DR12, ilim,AB = 21.3, Alam et al.
2015), CFHTLS (T0007, ilim,AB = 24.8, Hudelot et al. 2012) and
KiDS (DR2, ilim,AB = 24.2, de Jong et al. 2015) surveys. We are
also using mid-infrared observations in the W1 and W2 filters of
the WISE satellite (ALLWISE3, W1lim,AB = 20.3, Wright et al.
2010; Mainzer et al. 2011) and ultra-violet (filters FUV, NUV)
from the GALEX satellite (GR6/7, NUVlim,AB = 20.5, Morris-
sey et al. 2007). We corrected all photometric measurements ac-
cording to the Schlegel maps of Galactic absorption (Schlegel et
al. 1998) and the Cardelli law for the Milky way (Cardelli et al.
1989).
2
https://www.eso.org/sci/observing/PublicSurveys/

sciencePublicSurveys.html

3
http://wise2.ipac.caltech.edu/docs/release/allwise/
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https://www.eso.org/sci/observing/PublicSurveys/

sciencePublicSurveys.html

3
http://wise2.ipac.caltech.edu/docs/release/allwise/
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r<20	(r<18)	&	Pq>0.1:	completeness	77%	(59%)	&	purity	of	95%	(97%)	
r<18:	no	stars	classified	as	quasars	



16	

Photo-z	es6ma6on:	
The	role	of	different	components	
Model	 the	 quasar	 fluxes	 through	 a	 linear	 combina6on	 of	 the	
amplitudes	 of	 the	 principal	 components	 of	 quasar	 spectra	 in	 a	 6-
dimension	space	(Yip+04)	+	reddening	law.	
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Photo-z	es6ma6on	

2. Methodology 13

Figure 7: Six quasar eigenspectra at rest frame from a PCA employed in our analysis.
The lowest-order component (eigen 0) is the most important one, because it represents
the mean quasar spectrum and, therefore, it carries all the main type-I quasar features.

For this reason, we implemented the least squares package3 from Python,

which is an optimization tool more suitable to perform the minimization proce-

dure. Now, the processing time is of order 2.5 s for each object.

Our model is defined as:

F

k

µ

(z) =
5X

n=0

↵

n

E

n,µ

(z)

✓
�

µ

�0

◆��

(1)

where F

k

µ

(z) is the µ-band model flux of object k at redshift z ; E

n,µ

(z) is the

µ-band flux of the n-th eigenspectrum at redshift z with corresponding weight

↵

n

; �

µ

is the central wavelength of the µ-band filter, and �0 = 3506.8 Å is a scale

wavelength.

Therefore, the parameters of our model are ↵

n

and �, and we allow the

redshift to vary between 0 < z

p

< 5.

The relative weights derived from Yip et al. (2004) for the eigenspec-

tra are, from lowest to higher order, {1.0, 0.213, 0.135, 0.109, 0.084, 0.072}. We

set an initial guess for each parameter ↵

n

and allow them to vary around the

corresponding relative weights. We allow � to vary between 0 and 0.75.

The photometric redshift corresponds to the value of z that minimizes the

following function:

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least squares.html
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where f

k,µ

is the observed µ-band flux of the quasar candidate k with the cor-

responding uncertainty �

k,µ

, and �

t,µ

(z) is an additional error (equivalent to a

“template noise”) that we introduce to better account for the uncertainty of not

considering the full set of eigenspectra (note that it depends both on the filter µ

and is a function of redshift z).

This additional eigenspectrum variance takes into account the weighted

sum of the relative contributions (weights) of the eigenspectra 6 to 11 plus an

additional 2.5% uncertainty in the flux of the filters that are located on the left

side of the Lyman-↵ break (1100(1 + z) Å).

In Fig.8, we give an example of the Vanden Berk composite quasar spec-

trum (Vanden Berk et al. 2001) at di↵erent redshifts in the S-PLUS photometric

system. Note that there are specific redshift intervals in which an emission line

is present in at least one of the filters; in these cases, the photo-z estimation can

be much more e�cient.

In the end, our method estimates not only the maximum likelihood redshift

value, but also the PDZ for each quasar candidate. The photo-z results are

presented in the next section.

3 Results and discussion

After applying the random forest algorithm to the sample of 39, 470 point-

like sources with spectroscopic match from S-PLUS DR1, we obtain the proba-

bilities of a given object of being a star, a galaxy and a quasar. The importance

of using the spectroscopic match sample is that it serves as a validation test for

our methods of classification and photo-z estimation.

To make an assessment of the performance of the classification, we can

compute the purity p

k

(equation 3) and the completeness C

k

(equation 4) for a

given point-like source of type k.

p

k

=
N

k

S

k

+ G

k

+ Q

k

(3)

where N

k

is the number of real objects of type k that are classified as type k,

while S

k

, G

k

and Q

k

are, respectively, the number of real stars, galaxies and

quasars that end up classified as kind k.

Model:	
	
	
	
	
	
	
Chi2	minimiza6on	(least	squares):	

1.  Observa6on:	{mμ
k}	

2.  Start:	ini6al	guess	{αn
0}	

3.  Varia6on	around	the	rela6ve	
weights:	 {w0	 =>	 w5}	 =	 {1.0,	
0.213,	 0.135,	 0.109,	 0.084,	
0.072}	

4.  β	varies	between	[-1.5,	1.5]	
5.  λ 0	 =	 3 5 0 6 . 8	 Å	 ( s c a l e	

wavelength)	
6.  z	varies	between	[0,	5]	
7.  σt,μ

2:	 addi6onal	 variance	
(contribu6ons	of	eigenspec	6	
to	 11	 plus	 uncertainty	 on	
Lyman-α	break)		
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Photo-z	es6ma6on	

zs = 2.05 
zp = 2.04 
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16 3. Results and discussion

Table 1: Number of stars, galaxies and quasars that end up classified as quasars in
magnitude-limited samples and for di↵erent probability (P

q

) cuts.

Type of object r < 18 r < 19 r < 20

star Total 12,722 20,055 26,821
P

q

> 0.1 0 4 20
P

q

> 0.2 0 4 19
P

q

> 0.4 0 2 14

galaxy Total 1,203 2,054 3,088
P

q

> 0.1 3 12 87
P

q

> 0.2 3 12 65
P

q

> 0.4 2 7 44

quasar Total 144 687 2,634
P

q

> 0.1 85 509 2,028
P

q

> 0.2 75 476 1,900
P

q

> 0.4 63 424 1,732

Finally, we note that the number of stars varies too little from the bright

end to the faint end, which means that it is certainly not following the number of

stars expected with Besançon (or any other model of stellar population synthesis).

This is only an indication that we might not be observing all the stars, but we

have to bear in mind that the survey has just started collecting data.

Extrapolating these results to the S-PLUS main survey, which will map

⇠ 8, 500 deg2 of the Southern hemisphere, we forecast a total number of approx-

imately 703, 000 quasars, brighter than r = 20, and with ⇠ 95% purity.

For the almost 6, 000 quasars present in our sample, we compute the pho-

tometric redshifts with our QPz ls method.

We express the e�ciency of the photo-z estimation in terms of the precision

(�
nmad

), dispersion (�
z

), bias fraction (b
z

) and number of outliers (⌘).

A popular way of estimating the precision is the normalized median abso-

lute deviation (Matute et al. 2012):

�

nmad

= 1.48 x median

���
�z � median(�z)

1 + z

spec

��� (5)

where �z = z

photo

�z

spec

, and �

z

=
�z

1 + z

spec

is the standard deviation in redshift.

Note that the standard deviation alone already constitutes a way of es-

timating the accuracy of the measure. However, �

nmad

takes into account the

fluctuations around the diagonal line where z

photo

= z

spec

and, therefore, is less

sensitive to the number of outliers (i.e. catastrophic errors). In the case of a null
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���
�z

1 + z

spec

��� > 2 �

nmad

. (7)

The value of ⌘ may be misleading when there are few objects in the redshift

bin. For this reason, we calculate ⌘ for the whole sample.

One further quality cut is the odds, which in general can be defined as

odds =

Z
z

peak

+1�

z

peak

�1�

p(z)dz

Z
z

max

z

min

p(z)dz

(8)

where z

peak

is the redshift for a specific peak (e.g. the maximum likelihood peak),

z

min

and z

max

define the redshift range considered in the photo-z estimation, and

1� corresponds to the researcher’s expectation to the redshift uncertainty for

that sample. We note that odds 2 (0, 1]. In our analysis, we consider 1� = 0.01,

which is roughly the precision we expect to obtain with S-PLUS.

The odds defined in equation 8 can be interpreted in the following way: the

higher its value, the more precise the photo-z estimation, and hence the smaller

the redshift dispersion �

z

.

In Fig.10 we show a comparison between the spectroscopic redshift and

the photometric redshift for the quasars brighter than r < 19 and with odds

> 0.65. In this case, �

nmad

= 0.012 and the fraction of outliers is ⌘ = 30.5%.

On bottom panel, we show the redshift dispersion, which is very elevated in the

low-redshift end. The diagonal lines indicate the percentage of outliers for two

di↵erent �

nmad

thresholds (0.018 and 0.18). Note that the dispersion decreases

with an increase in redshift. These results also indicate that our procedure tends

to overestimate the redshift for low-redshift quasars, and to underestimate the

photo-z for high-redshift quasars (as we can see in Fig.11). Again, one of the

causes for this behavior is that at low-redshifts there are no appreciable emission

lines (see Fig.8), so it is harder to estimate the photo-z.

Fig.12 shows the SDSS spectrum of a z = 2.0574 quasar and the cor-

responding PDZ, detected with S-PLUS in Stripe-82 region and classified as a

quasar with a probability of 86.5%. Top panel compares the best-fit combination

of eigenspectra at spectroscopic and photometric redshifts.

In our results, we have several examples of quasars (with spectroscopic

confirmation) for which our code finds the best eigenspectra at the correct redshift

(i.e. z

p

' z

s

), and for which the combination of eigenspectra do not result in

(non-physical) negative fluxes at certain filter bands. However, this is not the
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Photo-z	quality	

σnmad	=	0.024	
η	=	45%	
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zp=0.90 

PDZ	
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zp=0.90	
zp=1.348 

PDZ	
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zp=0.90	
zp=1.348	

zp=1.91 

PDZ	
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zp=0.90	
zp=1.348	

zp=1.91	
zp=2.332 

PDZ	
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zp=0.90	
zp=1.348	

zp=1.91	

zp=2.739 

PDZ	



25	

zp=0.90	
zp=1.348	

zp=1.91	
zp=2.332	

zp=2.739	
zp=3.41 

PDZ	
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J-PAS:	
Javalambre	
Physics		
of	the	
Accelera6ng	
Universe	
Astrophysical	
Survey	

8,000	deg2		
7	deg2	fov	camera	

2.5	m	telescope	(T250)	
Sierra	de	Javalambre,	Teruel,	Spain	
Photometry:	ugrz	+	54	NB	+	2	MB	

“Low-resolu6on	spectrum”	
Internal	J-PAS-like	data	
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Photo-z	quality	

σnmad	=	0.009	
η	=	12%	

	

Sample:	
209	quasars	in	4	AEGIS	fields	
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Summary	

So	far,	our	tools	allow	us	to	obtain	(a)	an	accurate	(redshiU	precision	
of	 2%	 for	 S-PLUS,	 0.1%	 for	 J-PAS)	 and	 (b)	 high	 purity	 (up	 to	 97%)	
catalog	of	quasars.	
	
Op6mal	 es6mator	 (Abramo+15)	 to	 construct	 simulated	 maps	 of	
quasars.	These	maps	(a)	will	have	the	same	proper6es	drawn	by	the	
quasar	samples	and	 (b)	will	 take	 into	account	both	selec6on	effects	
and	redshiU	errors	(through	the	PDZs).	
	
Exploit	 the	 poten6al	 of	 quasar	 catalogs	 to	 map	 the	 growth	 of	
structures	on	large-scales.	



Thank you
Obrigada
arigatō

Contact: c.queirozabs@gmail.com


