Capítulo 10

Problemas Tridimensionais II: Espalhamento

No capítulo anterior estudamos os estados ligados de sistemas tridimensionais. Apesar de toda a importância destes estados, eles não esgotam todas as possibilidades. Neste capítulo estudaremos o espalhamento em Mecânica Quântica, o qual é muito utilizado para o estudo de sistemas em todas as áreas da Física. Através do espalhamento aprendemos muito sobre a estrutura mais íntima da matéria e suas interações, desde os cristais, moléculas, átomos, núcleos até as partículas elementares.

Consideremos uma hamiltoniana cujo potencial seja esfericamente simétrico e satisfaça $^{\rm 1}$

$$\lim_{t \to \infty} V(r) = 0. \tag{10.1}$$

O espectro desta hamiltoniana possui duas partes distintas:

- 1. Espectro discreto (E < 0) que é caracterizado pelos valores discretos dos autovalores E e também por seus autoestados serem normalizáveis $(\int d^3 \mathbf{x} |\Psi|^2 < \infty)$. Estes estados representam partículas ligadas ao potencial V, e foram analisados no capítulo anterior.
- 2. Espectro contínuo $(E \ge 0)$ cujos autovalores E formam um conjunto não enumerável e as correspondentes autofunções são não

¹Como discutido no capítulo 9, podemos separar um problema de dois corpos no movimento do centro de massa e no movimento relativo das partículas. Estudaremos o último em detalhe, sendo a conexão entre o espalhamento no centro de massa e o mais geral a mesma que conhecemos da Mecânica Clássica.

localizadas, *i.e.* não são normalizáveis. Estes estados descrevem o espalhamento de partículas pelo potencial V.

As condições de contorno empregadas nestes dois casos são muito distintas tendo em vista que

- 1. Para o espectro discreto requeremos que a função de onda Ψ seja de quadrado integrável ($\int d^3 \mathbf{x} |\Psi|^2 < \infty$), e conseqüentemente esta deve ir a zero suficientemente rápido no limite $r \to \infty$. Lembre-se que na resolução de problemas unidimensionais empregamos o mesmo critério (normalizabilidade) para inferir qual a condição de contorno que deveríamos usar.
- 2. Para o espectro contínuo, a exemplo do que foi feito nos problemas unidimensionais, a condição de contorno depende do problema físico que desejamos analisar. A nossa escolha será que Ψ deve representar o espalhamento de uma partícula de momento linear bem definido pelo potencial V e portanto, deve conter uma onda livre incidente bem como uma onda emergente a grandes distâncias do potencial espalhador.

No estudo do espectro contínuo imporemos que os autoestados da hamiltoniana do sistema satisfazem a

$$\Psi \to e^{i\mathbf{k}\cdot\mathbf{r}} + f(\theta,\phi)\frac{e^{ikr}}{r} , \qquad (10.2)$$

no limite $r \to \infty$. O primeiro termo desta expressão representa uma partícula livre incidente de momento linear bem definido a qual é espalhada pelo potencial V, resultando a onda emergente descrita pelo segundo termo em (10.2). A amplitude de espalhamento f é obtida a partir da autofunção da hamiltoniana que satisfaz o comportamento (10.2). Note que para (10.2) poder ocorrer o potencial V deve ser de curto alcance, uma vez que tanto $\exp(i\mathbf{k} \cdot \mathbf{r})$ como $\exp(ikr)/r$ representam partículas livres no limite $r \to \infty$. Na realidade, esta condição de contorno só pode ser utilizada para potenciais que se anulem no infinito mais rapidamente que 1/r. Por exemplo, no espalhamento por um potencial coulombiano há o aparecimento de uma fase adicional proporcional a $\ln(2kr)$.

Figura 10.1: Definição da geometria considerada num espalhamento.

10.1 Cinemática: seção de choque diferencial

Vamos agora definir a seção de choque diferencial, a qual descreve a distribuição angular das partículas espalhadas por um centro de forças, bem como mostrar a sua relação com a forma assintótica (10.2) dos autoestados da hamiltoniana. Para tanto vamos considerar que o fluxo de partículas incidentes é paralelo ao eixo z e que o centro espalhador encontra-se em r = 0, como mostra a figura 10.1.

Em geral, o número de partículas espalhadas por unidade de tempo $(N_{\rm esp})$ que atravessam um pequeno ângulo sólido $\Delta\Omega$ é proporcional a $\Delta\Omega$ e ao fluxo incidente F. Logo, podemos escrever²

$$N_{\rm esp} = \frac{d\sigma}{d\Omega} \ \Delta\Omega \ F \ , \tag{10.3}$$

onde a constante de proporcionalidade $d\sigma/d\Omega$ é a seção de choque diferencial deste processo, a qual possui dimensão de área. A seção de choque total é então definida por

$$\sigma = \int d\Omega \, \frac{d\sigma}{d\Omega} \,. \tag{10.4}$$

²Note que esta expressão é válida tanto em Mecânica Clássica como em Quântica!

Para que $d\sigma/d\Omega$ independa das condições experimentais é necessário assumir que a densidade do feixe incidente seja suficientemente baixa para podermos desprezar as interações entre as partículas incidentes e também para que estas não interajam simultaneamente com o centro espalhador. Se isto não for satisfeito, deveremos resolver um problema de muitos corpos interagindo entre si e com o potencial espalhador V.

Da definição acima temos que

$$\frac{d\sigma}{d\Omega} = \frac{N_{\rm esp}}{F \ \Delta\Omega} \ . \tag{10.5}$$

Para obter F e $N_{\rm esp}$ é conveniente escrever a condição de contorno (10.2) na forma

$$\Psi \to \Psi_{\rm inc} + \Psi_{\rm esp}$$
 (10.6)

onde

$$\Psi_{\rm inc} = e^{ikz}$$
 e $\Psi_{\rm esp} = f \frac{e^{ikr}}{r}$. (10.7)

É natural identificar Ψ_{inc} com a onda incidente enquanto que Ψ_{esp} descreve a onda espalhada. Agora basta utilizar a corrente de probabilidade

$$\mathbf{J} = \frac{\hbar}{i2\mu} \left(\Psi^* \nabla \Psi - \Psi \nabla \Psi^* \right) , \qquad (10.8)$$

para calcular $N_{esp} \in F$. Devido ao significado físico de **J**, estas quantidades podem ser escritas como³

$$F = |\mathbf{J}_{\rm inc}| , \qquad (10.9)$$

$$N_{\rm esp} = \mathbf{J}_{\rm esp} \cdot \mathbf{e}_r \ r^2 \ \Delta\Omega \ , \tag{10.10}$$

onde \mathbf{J}_{inc} (\mathbf{J}_{esp}) é a corrente de probabilidade incidente (espalhada) obtida substituindo-se Ψ em (10.8) por Ψ_{inc} (Ψ_{esp}). Logo, temos que a corrente incidente é dada por

$$\mathbf{J}_{\text{inc}} = \frac{\hbar}{i2\mu} \left(e^{-ikz} \nabla e^{ikz} - e^{ikz} \nabla e^{-ikz} \right) ,$$
$$= \frac{\hbar k}{\mu} \mathbf{e}_{z} , \qquad (10.11)$$

³Aqui estamos desprezando a interferência entre a onda incidente e a espalhada. Num tratamento mais cuidadoso, além do escopo deste livro, pode-se mostrar que os resultados obtidos abaixo estão corretos.

10.2. Potenciais centrais: ondas parciais

ao passo que a corrente de probabilidade espalhada é

$$\mathbf{J}_{esp} = \frac{\hbar}{i2\mu} \left(f^* \frac{e^{-ikr}}{r} \nabla f \frac{e^{ikr}}{r} - \text{c.c.} \right) ,$$
$$= \frac{\hbar k}{\mu} \frac{|f|^2}{r^2} \mathbf{e}_r , \qquad (10.12)$$

onde conservamos apenas os termos mais importantes no limite $r \to \infty.$ Portanto, temos que

$$F = \frac{\hbar k}{\mu} , \qquad (10.13)$$

e também

$$N_{\rm esp} = \frac{\hbar k}{\mu} |f|^2 \Delta \Omega . \qquad (10.14)$$

Isto permite-nos obter a seção de choque diferencial deste processo, a qual é dada por por

$$\frac{d\sigma}{d\Omega} = |f(\theta, \phi)|^2 . \tag{10.15}$$

Exercício:

Mostre que este resultado independe da normalização adotada em (10.2), *i.e.* se multiplicarmos esta por uma constante A não alteraremos o resultado (10.15).

Resumindo, o programa que devemos seguir para obter a seção de choque diferencial de um dado processo é resolver a equação de Schrödinger independente do tempo sujeita à condição de contorno de espalhamento (10.2). Feito isto extraímos f da solução obtida, e assim obtemos $d\sigma/d\Omega$. A seguir faremos estes passos formalmente, visando encontrar uma expressão para f, a qual dependerá do comportamento dos autoestados da hamiltoniana no limite $r \to \infty$.

10.2 Potenciais centrais: ondas parciais

Quando o potencial V(r) responsável pelo espalhamento é esfericamente simétrico, o momento angular é uma quantidade conservada visto que

comuta com a hamiltoniana. Portanto, autoestados correspondendo a diferentes valores do momento angular são espalhados independentemente, sendo conveniente trabalhar-se na base em que o momento angular é diagonal. No que segue escreveremos os autoestados da hamiltoniana na forma $\frac{u_l(r)}{r}Y_{lm}$, o permite reduzir o problema de autovalores de H à seguinte equação radial

$$-\frac{\hbar^2}{2\mu}\frac{d^2u_l}{dr^2} + \left(V(r) + \frac{\hbar^2 l(l+1)}{2\mu r^2}\right)u_l = Eu_l , \qquad (10.16)$$

onde E é o autovalor associado a este auto
estado. No limite $r\to\infty$ esta equação toma a forma

$$-\frac{\hbar^2}{2\mu}\frac{d^2u_l}{dr^2} \cong Eu_l , \qquad (10.17)$$

onde assumimos que V tende a zero suficientemente rápido neste limite. A solução geral desta equação é

$$u_l(r) \cong A_l \sin\left(kr - \frac{l\pi}{2} + \delta_l\right)$$
, (10.18)

onde $E = \hbar^2 k^2 / 2\mu$, e A_l e δ_l são constantes. Uma vez que A_l é uma constante multiplicativa, já que este é um problema de autovalores, podemos determinar a fase δ_l impondo apenas uma condição de contorno, a qual deve ser $u_l(0) = 0$. Lembre-se que esta condição de contorno foi motivada no capítulo 9 e que a sua justificativa não envolvia a função de onda ser normalizável.

Um fato importante acerca de (10.18) é que este comportamento acarreta que o autoestado da hamiltoniana $\Psi = \frac{u_l}{r}Y_{lm}$ não satisfaz a condição de contorno de espalhamento (10.2)! Isto ocorre porque o seno em (10.18) contém uma onda espalhada (e^{ikr}) bem como uma onda incidente (e^{-ikr}). Logo, esta solução descreve uma onda incidente de momento angular bem definido que é espalhada pelo potencial V. Neste caso a onda espalhada possui o mesmo momento angular da incidente, uma vez que este é conservado.

Tendo em vista que os autoestados com energia E são degenerados, é natural fazer uma superposição linear destes visando que esta obedeça

10.2. Potenciais centrais: ondas parciais

a condição de contorno deste problema (10.2).⁴ Logo, escrevemos

$$\Psi = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} C_{lm} \frac{u_l(r)}{kr} Y_{lm}(\theta, \phi) , \qquad (10.19)$$

onde desejamos obter os C_{lm} de modo que (10.2) seja satisfeita. Uma vez que o potencial é central e que $\Psi_{inc} = e^{ikz}$, temos que Ψ não depende de ϕ , por causa da simetria de rotação em torno do eixo z que este processo exibe. Logo, $C_{lm} = 0$ para $m \neq 0$, o que nos conduz a

$$\Psi = \sum_{l=0}^{\infty} B_l (2l+1) i^l \frac{u_l(r)}{kr} P_l(\cos\theta) , \qquad (10.20)$$

onde os coeficientes da expansão foram escritos de maneira conveniente, e também usamos que $Y_{l0} = \sqrt{\frac{2l+1}{4\pi}}P_l(\cos\theta)$. Lembrando que ⁵

$$e^{ikz} = e^{ikr\cos\theta} = \sum_{l=0}^{\infty} (2l+1)i^l j_l(kr) P_l(\cos\theta) , \qquad (10.21)$$

temos, no limite $r \to \infty$, que

$$\Psi - e^{ikz} \rightarrow \frac{1}{i2k} \frac{e^{ikr}}{r} \sum_{l=0}^{\infty} (2l+1) \left(B_l e^{i\delta_l} - 1 \right) P_l(\cos\theta) \\ + \frac{1}{i2k} \frac{e^{-ikr}}{r} \sum_{l=0}^{\infty} (2l+1) \left(-B_l e^{-i\delta_l} + 1 \right) P_l(\cos\theta) (10.22)$$

Para satisfazer (10.2) devemos impor que o coeficiente de e^{-ikr} seja nulo, acarretando que

$$B_l = e^{i\delta_l} . (10.23)$$

Examinando (10.22) obtemos a amplitude de espalhamento $f(\theta)$.

$$f(\theta) = \frac{1}{i2k} \sum_{l=0}^{\infty} (2l+1) \left(e^{i2\delta_l} - 1 \right) P_l(\cos\theta) , \qquad (10.24)$$

$$= \frac{1}{k} \sum_{l=0}^{\infty} (2l+1) \ e^{i\delta_l} \ \sin \delta_l \ P_l(\cos \theta) \ . \tag{10.25}$$

 $^{^4\}mathrm{Lembre-se}$ que a superposição de autove tores com o mesmo autovalor também é um autove tor.

⁵Esta relação possui uma interpretação simples: uma partícula livre em um autoestado da energia e momento linear (lado esquerdo) está sendo expresso em termos de autoestados da energia e momento angular (lado direito).

Portanto, a seção de choque diferencial, que é dada por $|f|^2$, pode ser escrita formalmente como uma série

$$\frac{d\sigma}{d\Omega} = \frac{1}{k^2} \sum_{l,l'=0}^{\infty} (2l+1)(2l'+1)e^{i(\delta_l - \delta_{l'})} \sin \delta_l \sin \delta_{l'} P_l(\cos \theta) P_{l'}(\cos \theta) ,$$
(10.26)

ao passo que a seção de choque total toma a forma

$$\sigma \equiv \int d\Omega \, \frac{d\sigma}{d\Omega} = \frac{4\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l \,, \qquad (10.27)$$

onde utilizamos que

$$\int d\Omega \ P_l(\cos\theta) P_{l'}(\cos\theta) = \frac{4\pi}{2l+1} \delta_{ll'} \ . \tag{10.28}$$

10.2.1 Comentários

Antes de passar a resolução de alguns exemplos, é importante frisar os seguintes pontos:

• Quando $V(r) \equiv 0$, a solução da equação radial satisfazendo u(0) = 0 é dada por

$$u_l(r) = r j_l(kr) ,$$
 (10.29)

cujo comportamento assintótico para $r \to \infty$ é

$$u_l(r) \to C_l \sin\left(kr - \frac{l\pi}{2}\right)$$
 (10.30)

Portanto, temos que $\delta_l = 0$. Logo, usando (10.27) obtemos $\sigma = 0$, como era de se esperar já que uma partícula livre não deve sofrer espalhamento.

- Note que a seção de choque total do processo é dada pela soma incoerente das contribuições das ondas parciais *l*.
- A expressão formal (10.26) para $d\sigma/d\Omega$ é uma série sobre todas as ondas parciais l a qual, em geral, não pode ser escrita como uma

Figura 10.2: Visão clássica do espalhamento por um potencial de curto alcance: a linha tracejada representa a partícula incidente enquanto que a região escura o potencial espalhador.

expressão compacta. Somos então levados naturalmente a perguntar quais as ondas parciais que mais contribuem para a seção de choque diferencial. Para responder esta questão, consideremos um potencial com alcance a, *i.e.* $V(r) \cong 0$ para r > a. Argumentaremos que apenas as ondas parciais satisfazendo $l \leq ka$ contribuem significativamente para $d\sigma/d\Omega$.

Classicamente esperamos que as partículas incidindo com um parâmetro de impacto (b) maior que a não vão interagir com o potencial V, vide a figura 10.2. Logo, o momento angular máximo que uma partícula pode ter para ser espalhada é $\hbar k \times a$. Conseqüentemente, apenas as ondas satisfazendo $l \leq ka$ deverão espalhadas.

O argumento no contexto da Mecânica Quântica para obtermos esta conclusão é o seguinte: a função de onda do sistema para r pequeno é da forma $R_l \simeq j_l(kr)$, acarretando que o primeiro máximo desta dá-se para $kr \simeq l$. Logo, se l > ka a função de onda será pequena na região onde o potencial espalhador é maior, acarretando que estas ondas parciais não sentirão o efeito de V. Por conseguinte, as ondas mais espalhadas são aquelas que satisfazem $l \leq ka$.

Uma conseqüência interessante deste argumento é que no limite de baixas energias $(ka \ll 1)$ apenas a onda s (l = 0) contribui

para σ . Neste caso a seção de choque diferencial é isotrópica já que $P_0(\cos \theta) = 1$. Além disso, a seção de choque total é dada por $\frac{4\pi}{k^2} \sin^2 \delta_0$.

• Para potenciais puramente atrativos $(V \leq 0)$ temos que $\delta_l > 0$. Isto ocorre pois a função de onda oscila mais rapidamente na região em que o potencial é não nulo, levando a um avanço na fase com respeito ao caso livre (V = 0). Analogamente, potenciais puramente repulsivos $(V \geq 0)$ conduzem a $\delta_l < 0$. Isto também pode ser visto a partir da seguinte relação entre o deslocamento de fase, o potencial e o autoestado da energia u_l :

$$\sin \delta_l = -\frac{2\mu}{\hbar^2} \int_0^\infty dr \ r j_l(kr) u_l(r) V(r) , \qquad (10.31)$$

onde a normalização que adotamos é tal que $u_l(r) \to \sin(kr - l\pi/2 + \delta_l)$ no limite $r \to \infty$.

Exercício:

Demonstre a relação acima.

Esta relação em si não é muito útil pois para obtermos δ_l precisamos conhecer u_l , sendo portanto um método complicado de calcular o deslocamento de fase! Contudo, ela permite-nos fazer aproximações. Supondo que o potencial seja fraco, podemos aproximar o autoestado pela função de onda livre, *i.e.* $u_l(r) \simeq kr j_l(kr)$ que nos leva a

$$\sin \delta_l \simeq -\frac{2\mu k}{\hbar^2} \int_0^\infty dr \ r^2 j_l^2(kr) V(r) \ .$$
 (10.32)

Com isso podemos ver que o sinal de δ_l é oposto ao do potencial.

10.3 Aplicações simples

Visando demonstrar o procedimento para o cálculo da seção de choque pelo método de ondas parciais, vamos resolver dois exemplos: poço quadrado e esfera dura.

10.3. Aplicações simples

10.3.1 Poço quadrado

Consideremos um sistema cujo potencial de interação é dado por

$$V(r) = \begin{cases} -V_0 & \text{se} & 0 < r < a \\ 0 & \text{se} & r > a \end{cases},$$
(10.33)

onde $V_0 > 0$. A equação radial

$$-\frac{\hbar^2}{2\mu r}\frac{d^2}{dr^2}(rR_l) + \left(\frac{\hbar^2 l(l+1)}{2\mu r^2} + V(r)\right)R_l = ER_l$$
(10.34)

toma a forma

$$\frac{1}{r}\frac{d^2}{dr^2}(rR_l) + {k'}^2R_l - \frac{l(l+1)}{r^2}R_l = 0 \quad \text{para} \quad r < a , \quad (10.35)$$

$$\frac{1}{r}\frac{d^2}{dr^2}(rR_l) + k^2R_l - \frac{l(l+1)}{r^2}R_l = 0 \quad \text{para} \quad r > a , \quad (10.36)$$

onde definimos $k'^2 = \frac{2\mu}{\hbar^2}(E+V_0)$. Lembre-se que os estados descrevendo espalhamento possuem $E = \hbar^2 k^2/2\mu > 0$. Visto que as equações acima são as mesmas de uma partícula livre, temos que a solução geral para R_l é

$$R_{l}(r) = \begin{cases} A_{l}j_{l}(k'r) + B_{l}\eta_{l}(k'r) & \text{para } r < a \\ C_{l}j_{l}(kr) + D_{l}\eta_{l}(kr) & \text{para } r > a \end{cases}$$
(10.37)

Para obter os δ_l , iniciamos impondo a condição de contorno $u_l(0) = 0$, a qual implica que $B_l = 0$. Utilizando a forma assintótica das funções de Bessel esféricas vistas no capítulo anterior, é fácil mostrar⁶ que os deslocamentos de fase são dados por $D_l/C_l = -\tan \delta_l$.

Uma vez que a expressão para R_l possui duas formas, devemos requerer que $R_l \in dR_l/dr$ sejam contínuas em r = a, acarretando que

$$A_l j_l(k'a) = C_l j_l(ka) + D_l \eta_l(ka) , \qquad (10.38)$$

$$A_l k' j'_l(k'a) = C_l k j'_l(ka) + D_l k \eta'_l(ka) , \qquad (10.39)$$

⁶Demonstre este fato!

com a linha (') representando a derivação com respeito ao argumento da função. Definindo a quantidade

$$a\gamma_l(k) \equiv \frac{R_l(a)}{\frac{dR_l}{dr}(a)} = \frac{j_l(k'a)}{k'j_l'(k'a)}, \qquad (10.40)$$

podemos obter, a partir de (10.38) e (10.39), uma expressão simples para δ_l .

$$\tan \delta_l = \frac{ka\gamma_l j_l'(ka) - j_l(ka)}{ka\gamma_l \eta_l'(ka) - \eta_l(ka)} \,. \tag{10.41}$$

A partir desta expressão podemos constatar que os deslocamentos de fase δ_l são funções de k, ou seja da energia da partícula incidente. Note que a informação sobre o potencial encontra-se codificada nas constantes γ_l .

Exercício

Mostre que que esta última expressão é válida para qualquer potencial de alcance a, desde que avaliemos (10.40) usando a correspondente solução R_l para r < a.

Apesar de possuirmos uma expressão fechada para os deslocamentos de fase (10.41) não é fácil, em geral, identificar quais as ondas parciais que mais contribuem ou qual o comportamento de seção de choque com a energia. Para ganharmos intuição, analisemos este problema no limite $ka \rightarrow 0$, ou seja no limite de baixas energias. Verifiquemos explicitamente que a seção de choque é dominada pela onda parcial s (l = 0), como foi argumentado anteriormente. No capítulo anterior vimos que

$$j_l(\rho) \to \frac{\rho^l}{(2l+1)!!}$$
, e $\eta_l(\rho) \to -\frac{(2l-1)!!}{\rho^{l+1}}$, (10.42)

no limite $\rho \to 0$. Substituindo (10.42) em (10.41), vemos que no limite de baixas energias

$$\tan \delta_l \simeq \frac{1}{[(2l-1)!!]^2} \frac{l\gamma_l - 1}{(l+1)\gamma_l + 1} (ka)^{2l+1} .$$
 (10.43)

10.3. Aplicações simples

Tendo em vista que tan δ_l é pequena, seque que tan $\delta_l \simeq \sin \delta_l$. Com isto, vemos a partir de (10.25) e (10.43) que a amplitude de espalhamento é proporcional a $(ka)^{2l}$. Portanto, a seção de choque é dominada pela onda l = 0, exceto em caso excepcionais em que δ_0 se anule. No limite de baixas energias

$$\sin \delta_0 \simeq -\frac{ka}{1+\gamma_0} \,. \tag{10.44}$$

Utilizando a forma explícita das funções de Bessel esféricas de ordem zero podemos avaliar γ_0 a partir de (10.40).

$$1 + \gamma_0 = \frac{1}{1 - \frac{\tan(k'a)}{k'a}} \tag{10.45}$$

Logo, no limite de baixas energias $(ka \rightarrow 0)$, a seção de choque diferencial é isotrópica por ser uma onda s e a seção de choque total é dada por

$$\sigma = 4\pi \frac{d\sigma}{d\Omega} \simeq 4\pi a^2 \left(1 - \frac{\tan k'a}{k'a}\right)^2 \,. \tag{10.46}$$

Exercício

Para o caso $V_0 < 0$ (potencial repulsivo), mostre que a seção de choque total no limites de baixas energias é dada por

$$\sigma \simeq 4\pi a^2 \left(1 - \frac{\tanh \kappa' a}{\kappa' a}\right)^2 \tag{10.47}$$

onde $\kappa^2 = -\frac{2\mu}{\hbar^2}(E + V_0) > 0$ neste limite.

10.3.2 Esfera dura

Analisemos agora o espalhamento de partículas por uma esfera dura, a qual é descrita pelo potencial

$$V(r) = \begin{cases} \infty & \text{se } r < a \\ 0 & \text{se } r > a \end{cases}$$
(10.48)

A condição de contorno que deve ser imposta é $R_l(a) = 0$, uma vez que R_l se anula para r < a. A solução geral para R_l na região r > a é

$$R_l = C_l j_l(kr) + D_l \eta_l(kr) . (10.49)$$

Lembrando que $D_l/C_l = -\tan \delta_l$ e impondo a condição de contorno, podemos concluir que

$$\tan \delta_l = \frac{j_l(ka)}{\eta_l(ka)} \,. \tag{10.50}$$

Analisemos o limite de baixas energias deste problema. Para $E \to 0$, *i.e.* $ka \to 0$, temos que

$$\tan \delta_l \simeq -\frac{(ka)^{2l+1}}{(2l+1)!!(2l-1)!!} \simeq \sin \delta_l \simeq \delta_l , \qquad (10.51)$$

onde utilizamos (10.42). Portanto, temos que $|\delta_l| \ll |\delta_0|$ $(l \neq 0)$ no limite acima, o que significa que apenas a onda parcial l = 0 contribui significativamente. Isto já era esperado tendo em vista a análise feita na seção anterior. Conseqüentemente neste limite

$$\sigma \simeq \frac{4\pi}{k^2} \ (2 \times 0 + 1) \ \delta_0^2 = 4\pi a^2 \ . \tag{10.52}$$

Este resultado é quatro vezes a área clássica da esfera! Explique-o!

Exercício

Analise o limite de altas energias deste problema e mostre que o resultado é $\sigma = 2\pi a^2$. Explique o porquê deste limite fornecer uma resposta diferente da clássica, apesar de estarmos no limite de *ótica geométrica*!⁷

10.4 Teorema óptico

Uma propriedade importante da amplitude de espalhamento é que a parte imaginária de f(0) está relacionada com a seção de choque total

⁷Para maiores detalhes vide o livro R. Pierls, *Surprises in Theoretical Physics*, Princeton University Press, 1979.

10.5. Espalhamento ressonante

do processo. Para tornar evidente este fato, calculemos f(0) a partir de (10.25)

$$f(0) = \frac{1}{k} \sum_{l=0}^{\infty} (2l+1)e^{i\delta_l} \sin \delta_l ,$$

= $\frac{1}{k} \sum_{l=0}^{\infty} (2l+1)(\cos \delta_l \sin \delta_l + i \sin^2 \delta_l) ,$ (10.53)

onde utilizamos que os polinômios de Legendre satisfazem $P_l(1) = 1$. Comparando esta expressão com (10.27) podemos notar que

$$\sigma = \frac{4\pi}{k} \Im f(0) , \qquad (10.54)$$

onde o símbolo \Im representa a parte imaginária da expressão que o segue.

A razão física para a existência desta relação é a conservação de probabilidade: as partículas espalhadas devem ser retiradas do feixe incidente e com isso a intensidade deste na direção frontal ($\theta \simeq 0$) é reduzida, sendo este fato codificado por $\Im f(0)$. Para compreendermos os detalhes desta relação, deveríamos estudar meticulosamente a conservação de probabilidade num espalhamento, o que não faremos por isto fugir aos nossos objetivos.

Uma análise cuidadosa do processo de espalhamento permiter-nosia mostrar que a relação (10.54) é geral, valendo até para situações em que o potencial não é central, ou seja, quando f depende também do ângulo azimutal ϕ .

10.5 Espalhamento ressonante

Podemos escrever a expressão para a seção de choque total na forma,

$$\sigma = \sum_{l=0}^{\infty} \sigma_l , \qquad (10.55)$$

 com

$$\sigma_l = \frac{4\pi}{k^2} (2l+1) \sin^2 \delta_l , \qquad (10.56)$$

onde explicitamos a contribuição de cada onda parcial. Note que a contribuição máxima que a onda parcial l pode dar ocorre para $\sin^2 \delta_l = 1$, ou seja, quando $\delta_l(k) = \pm \pi/2$. Quando temos a ocorrência de σ_l máximo dizemos que o espalhamento é ressonante para uma dada energia.

Existindo o espalhamento ressonante para a onda parcial l com uma energia E_R , podemos obter uma expressão aproximada para a seção de choque como uma função da energia. Nosso ponto de partida será que $\delta_l(E_R) = \pm \pi/2$, o que implica em cot $\delta_l(E_R) = 0$. Portanto, expandindo cot $\delta_l(E)$ em série de Taylor em torno de E_R temos que

$$\cot \delta_l(E) = \cot \delta_l(E_R) + (E - E_R) \frac{d}{dE} \cot \delta_l(E) \Big|_{E=E_R} + \dots$$

$$\simeq -\frac{2}{\Gamma} (E - E_R) , \qquad (10.57)$$

onde definimos $-2/\Gamma = d \cot \delta_l/dE$ avaliada em $E = E_R$. Substituindo esta expressão em (10.56) resulta que

$$\sigma_l(E) \simeq \frac{4\pi}{k^2} (2l+1) \frac{\Gamma^2/4}{(E-E_R)^2 + \Gamma^2/4} \,. \tag{10.58}$$

Esta á a fórmula de Breit-Wigner, cujo comportamento com a energia é dado pela figura 10.3.

10.5.1 Exemplo: potencial delta de casca

Analisemos o espalhamento da onda s(l=0) por um potencial delta de casca, o qual é dado por

$$V(r) = \lambda \delta(r - a) . \tag{10.59}$$

Este potencial é repulsivo ou atrativo se $\lambda > 0$ ou $\lambda < 0$, respectivamente. A equação radial satisfeita por $u_0(r)$ é

$$\frac{d^2 u_0}{dr^2} + \left[k^2 - \alpha \delta(r-a)\right] u_o = 0 , \qquad (10.60)$$

onde definimos $k^2 = 2\mu E/\hbar^2$ e $\alpha = 2\mu\lambda/\hbar^2$. Para $r \neq a$ a função delta é nula e u_0 satisfaz a equação radial de uma partícula livre. Portanto,

Figura 10.3: Dependência da seção de choque parcial σ_l com a energia próximo a uma ressonância.

a solução desejada possui a forma

$$u_0(r) = \begin{cases} A\sin(kr) & \text{para } r < a \\ B\sin(kr + \delta_0) & \text{para } r > a \end{cases}, \quad (10.61)$$

onde já impusemos que $u_0(0) = 0$. A continuidade de u_0 para r=a implica que

$$A\sin(ka) = B\sin(ka + \delta_0) , \qquad (10.62)$$

enquanto que o salto da derivada de u_0 conduz a

$$kB\cos(ka+\delta_0) - kA\cos(ka) = \alpha A\sin(ka) . \qquad (10.63)$$

A partir das duas últimas equações podemos concluir que

$$\tan \delta_0 = -\frac{\alpha}{k} \frac{\sin^2(ka)}{1 + \frac{\alpha}{2k}\sin(2ka)} . \tag{10.64}$$

O espalhamento da onda s por este potencial é ressonante para valores da energia que conduzam a $|\delta_0| = \pi/2$, *i.e.* $|\tan \delta_0| = \infty$. Logo, a condição para a existência de espalhamento ressonante é

$$\sin(2ka) = -\frac{2k}{\alpha} \,. \tag{10.65}$$

10.6 Efeito Ramsauer-Townsend

Ramsauer e Townsend observaram que o espalhamento de elétrons por átomos de gases raros possuia uma seção de choque muito pequena quando a energia dos elétrons é da ordem de 0.7 eV. Devida a baixa energia dos elétrons, a contribuição mais importante para a seção de choque deste processo provém da onda s. A explicação da pequena seção de choque observada por Ramsauer e Townsend é que o deslocamento de fase (δ_0) anula-se e conseqüentemente a seção de choque também.

O espalhamento por um poço quadrado atrativo apresenta o efeito Ramsauer-Townsend. Impondo que $\delta_0 = 0$ em (10.44), temos que

$$k'a = \tan(k'a) , \qquad (10.66)$$

onde utilizamos (10.45). Lembre-se que $k'^2 = \frac{2\mu}{\hbar^2}(E+V_0)$. A partir desta equação vemos que a seção de choque anula-se apenas para valores bem determinados da energia.

10.7 Equação integral para o espalhamento

O estudo do espalhamento de partículas por um potencial $V(\mathbf{x})$ requer que estudemos o problema de autovalores da hamiltoniana sujeito à condição de contorno (10.2). Mais explicitamente, temos que resolver

$$\left(\nabla^2 + k^2\right)\Psi = \frac{2\mu}{\hbar^2}V(\mathbf{x})\Psi , \qquad (10.67)$$

onde $k^2 = 2\mu E/\hbar^2$. Em algumas aplicações é interessante substituir (10.67) por uma equação integral, a qual já incorpore naturalmente a condição de contorno (10.2). Para tanto utilizaremos a função de Green $G(\mathbf{x}, \mathbf{x}')$ deste problema, a qual é a solução de

$$\left(\nabla_{\mathbf{x}}^{2}+k^{2}\right)G(\mathbf{x},\mathbf{x}')=\delta(\mathbf{x}-\mathbf{x}'),\qquad(10.68)$$

cujo comportamento assintótico para $|\mathbf{x}| \gg |\mathbf{x}'|$ é

$$G(\mathbf{x}, \mathbf{x}') \to \frac{e^{ik|\mathbf{x}|}}{|\mathbf{x}|} .$$
 (10.69)

10.7. Equação integral para o espalhamento

Note que $G(\mathbf{x}, \mathbf{x}')$ nada mais é do que a onda emergente gerada por uma fonte pontual localizada em \mathbf{x}' . Conhecendo-se G é fácil verificar que

$$\Psi(\mathbf{x}) = \Psi_0(\mathbf{x}) + \int d^3 \mathbf{x}' \ G(\mathbf{x}, \mathbf{x}') \ \frac{2\mu}{\hbar^2} V(\mathbf{x}') \Psi(\mathbf{x}')$$
(10.70)

é solução de (10.67), caso Ψ_0 seja uma solução da equação homogênea $(\nabla^2 + k^2)\Psi_0 = 0$. A expressão (10.70) é uma solução formal do problema de espalhamento uma vez que Ψ aparece nos dois lados desta equação, ou seja, (10.70) é uma equação integral para Ψ ! (10.70) é a equação integral associada a (10.67), a qual pode acomodar a condição de contorno (10.2) caso façamos uma escolha conveniente para Ψ_0 .

Obtenhamos agora G. Para tanto devemos notar que $G(\mathbf{x}, \mathbf{x}') = G(\mathbf{x} - \mathbf{x}')$ por causa da simetria de translação de (10.68). Mais ainda, a simetria de rotação do problema permite escrever que $G(\mathbf{x}, \mathbf{x}') = G(|\mathbf{x} - \mathbf{x}'|)$. Agora escrevemos G na forma de uma transformada de Fourier

$$G(\mathbf{R}) = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \,\tilde{G}(\mathbf{p}) \, e^{i\mathbf{p}\cdot\mathbf{R}} \,, \qquad (10.71)$$

onde definimos $\mathbf{R} = \mathbf{x} - \mathbf{x}'$ com o intuito de simplificar a notação. Para obter $\tilde{G}(\mathbf{p})$ substituímos a última expressão em (10.68) e utilizamos que

$$\delta(\mathbf{x} - \mathbf{x}') = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} e^{i\mathbf{p}\cdot\mathbf{R}} , \qquad (10.72)$$

o que conduz a

$$\tilde{G}(\mathbf{p}) = -\frac{1}{\mathbf{p}^2 - k^2} \,.$$
(10.73)

Portanto, substituindo \tilde{G} em (10.71), temos que

$$G(\mathbf{R}) = -\int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{1}{\mathbf{p}^2 - k^2} e^{i\mathbf{p}\cdot\mathbf{R}} .$$
(10.74)

Usando coordenadas esféricas no espaço dos momentos com o eixo z escolhido na direção de \mathbf{R} escrevemos

$$G(\mathbf{R}) = -\int_0^\infty \frac{dp}{(2\pi)^3} p^2 \int_0^{2\pi} d\phi \int_{-1}^1 d\cos\theta \, \frac{1}{p^2 - k^2} e^{ipR\cos\theta} \,. \quad (10.75)$$

Figura 10.4: Contornos de integração no plano complexo.

As integrações angulares são fáceis e conduzem a

$$G(\mathbf{R}) = -\frac{1}{2\pi^2 R} \int_0^\infty dp \; \frac{p}{p^2 - k^2} \; \frac{e^{ipR} - e^{-ipR}}{2i} \; . \tag{10.76}$$

Uma vez que o integrando em p é par podemos integrar de $-\infty$ até $+\infty$ desde que dividamos o resultado por 2.

$$G(\mathbf{R}) = \frac{i}{8\pi^2 R} \int_{-\infty}^{\infty} dp \; \frac{p}{p^2 - k^2} (e^{ipR} - e^{-ipR}) \tag{10.77}$$

A integral acima apresenta pólos ao longo do eixo real de p em $p = \pm k$, o que indica que devamos prosseguir com cautela. Para evitar estas singularidades vamos deformar o contorno de integração para o percurso C_1 da figura 10.4.⁸

Utilizando o teorema dos resíduos para avaliar esta integral finalmente obtemos que

$$G(\mathbf{R}) = G^{+}(\mathbf{R}) = -\frac{1}{4\pi} \frac{e^{ikR}}{R} . \qquad (10.78)$$

⁸Mostre que apesar da mudança do caminho de integração (10.77) ainda é uma solução de (10.68).

10.7. Equação integral para o espalhamento

Poderíamos também haver escolhido o circuito ${\cal C}_2$ da figura acima , o que conduziria a solução

$$G(\mathbf{R}) = G^{-}(\mathbf{R}) = -\frac{1}{4\pi} \frac{e^{-ikR}}{R} .$$
 (10.79)

A solução G^+ (G^-) representa uma onda esférica emergente (incidente) devido a fonte pontual (tipo δ) que aparece no lado direito da equação de ondas (10.68).

Visando que a solução Ψ de (10.70) satisfaça a condição de contorno de espalhamento (10.2) escolheremos G^+ e $\Psi_0 = e^{ikz}$, o que nos leva a

$$\Psi(\mathbf{x}) = e^{ikz} - \frac{\mu}{2\pi\hbar^2} \int d^3\mathbf{x}' \; \frac{e^{ik|\mathbf{x}-\mathbf{x}'|}}{|\mathbf{x}-\mathbf{x}'|} \; V(\mathbf{x}')\Psi(\mathbf{x}') \;. \tag{10.80}$$

A escolha acima de Ψ_0 foi motivada pelo fato de que para V = 0 a solução deve descrever uma partícula livre.

Verifiquemos que as escolhas acimas conduzem ao resultado desejado. Para tanto, analisemos agora a forma que Ψ assume a grandes distâncias do potencial espalhador V, *i.e.* para $|\mathbf{x}| \gg |\mathbf{x}'|$. Neste limite temos que

$$|\mathbf{x} - \mathbf{x}'| = \sqrt{\mathbf{x}^2 + {\mathbf{x}'}^2 - 2\mathbf{x} \cdot \mathbf{x}'} \simeq |\mathbf{x}| - \frac{\mathbf{x} \cdot \mathbf{x}'}{|\mathbf{x}|}, \qquad (10.81)$$

o que permite concluir que no limite $\mathbf{x} \to \infty$

$$\Psi(\mathbf{x}) \to e^{ikz} - \left[\frac{\mu}{2\pi\hbar^2} \int d^3 \mathbf{x}' \ e^{-i\mathbf{k}\cdot\mathbf{x}'} \ V(\mathbf{x}')\Psi(\mathbf{x}')\right] \frac{e^{ik|\mathbf{x}|}}{|\mathbf{x}|} , \qquad (10.82)$$

onde definimos $\mathbf{k} = k\mathbf{x}/|\mathbf{x}|$. Portanto, as escolhas para $G \in \Psi_0$ foram acertadas, já que Ψ satisfaz (10.2). Além disso, desta última expressão também inferimos que

$$f(\theta,\phi) = -\frac{\mu}{2\pi\hbar^2} \int d^3 \mathbf{x}' \ e^{-i\mathbf{k}\cdot\mathbf{x}'} V(\mathbf{x}')\Psi(\mathbf{x}') \ . \tag{10.83}$$

A última expressão, apesar de elegante, na prática é inútil, uma vez que para a utilizarmos devemos conhecer Ψ em todo o espaço. Todavia, ela é utilizada para cálculos aproximados, como veremos na próxima seção.

10.8 Aproximação de Born

Intuitivamente esperamos que a função de onda de uma partícula muito energética difira pouco da de uma partícula livre. Com isto em mente, podemos desprezar o último termo em (10.80), obtendo que $\Psi \simeq \Psi_0$. Esta aproximação é chamada de aproximação de Born, a qual nada mais é do que o primeiro termo da solução de (10.80) iterativamente. Neste caso, (10.83) fornece que

$$f_B(\theta,\phi) \cong -\frac{\mu}{2\pi\hbar^2} \int d^3 \mathbf{x}' \ e^{-i\mathbf{q}\cdot\mathbf{x}'} V(\mathbf{x}') , \qquad (10.84)$$

onde $\mathbf{q} = \mathbf{k} - k\mathbf{e}_z$ é proporcional ao momento transferido à partícula incidente. Portanto, nesta aproximação, a amplitude de espalhamento é proporcional à transformada de Fourier do potencial espalhador.

Para esta aproximação ser válida o último termo de (10.80) deve ser desprezível, *i.e.*

$$|\Psi(\mathbf{x}) - e^{ikz}| = \left| -\frac{\mu}{2\pi\hbar^2} \int d^3\mathbf{x}' \frac{e^{ik|\mathbf{x}-\mathbf{x}'|}}{|\mathbf{x}-\mathbf{x}'|} V(\mathbf{x}')\Psi(\mathbf{x}') \right| \ll |\Psi_0| = 1.$$
(10.85)

Levando-se em consideração que a maior distorção de Ψ_0 ocorre em $\mathbf{x} = 0$, devemos então ter que

$$\left|\frac{\mu}{2\pi\hbar^2} \int d^3 \mathbf{x}' \frac{e^{ik|\mathbf{x}'|}}{|\mathbf{x}'|} V(\mathbf{x}') \Psi(\mathbf{x}')\right| \ll 1 .$$
 (10.86)

No caso de V depender apenas de r esta condição reduz-se a

$$\frac{2\mu}{\hbar^2 k} \left| \int dr' \ e^{ikr'} \sin(kr') V(r') \right| \ll 1 \ . \tag{10.87}$$

Podemos mostrar, a partir desta última condição, que esta aproximação é boa em duas situações⁹:

1. Para potenciais fracos, *i.e.* V_0a pequeno. Neste caso a condição que deve ser satisfeita independe da energia da partícula incidente é

$$V_0 a^2 \ll \frac{\hbar^2}{\mu} \tag{10.88}$$

⁹Mostre as duas condições a seguir.

10.8. Aproximação de Born

2. Para partículas bastante energéticas, *i.e.* k grande. Isto será verdade se

$$\frac{\mu a V_0}{\hbar^2 k} \ll 1$$
 . (10.89)

Fisicamente estas condições significam apenas que a partícula encontra-se aproximadamente livre. Isto não deveria ser uma surpresa, já que este foi o nosso ponto de partida.

10.8.1 Exemplo: potencial coulombiano blindado

Nosso primeiro exemplo será o espalhamento por um potencial esfericamente simétrico dado por

$$V(r) = -\frac{Ze^2}{r}e^{-\chi r} , \qquad (10.90)$$

o qual representa o potencial de uma carga Ze que se encontra blindada (cercada) por uma outra distribuição de cargas. Para calcularmos (10.84) com este potencial escolhemos o eixo z' na direção de **q**. Agora as integrais angulares são simples e fornecem

$$f_B(\theta) = \frac{2\mu Z e^2}{\hbar^2 q} \int_0^\infty dr \, \sin(qr) e^{-\chi r} = \frac{2\mu Z e^2}{\hbar^2 (q^2 + \chi^2)} \,. \tag{10.91}$$

Logo, utilizando que $\mathbf{q}^2 = 2k^2(1 - \cos\theta) = 4k^2\sin^2\left(\frac{\theta}{2}\right)$, temos que

$$\frac{d\sigma}{d\Omega} = \frac{4\mu^2 Z^2 e^4}{\hbar^4 (4k^2 \sin^2 \frac{\theta}{2} + \chi^2)^2} \,. \tag{10.92}$$

Formalmente podemos obter a seção de choque para o espalhamento coulombiano tomando o limite $\chi \to 0$, o que permite obter

$$\frac{d\sigma}{d\Omega} = \frac{\mu^2 Z^2 e^4}{4p^4 \sin^4 \frac{\theta}{2}} \,. \tag{10.93}$$

Curiosamente, esta resposta coincide com a resposta quântica e a clássica, apesar da aproximação de Born não poder ser aplicada ao espalhamento coulombiano, visto que a condição de validade (10.87) não é satisfeita. Isto é evidente quando olhamos para a a integral na equação (10.91) visto que esta não está bem definida para $\chi = 0$!

10.8.2 Exemplo: espalhamento por um átomo

Consideremos o espalhamento de um elétron por um átomo, o qual será representado por sua densidade de carga elétrica $-e\rho(\mathbf{r})$.¹⁰ Podemos associar uma densidade de carga $-e\rho$ a um sistema de N elétrons no estado $\Psi(\mathbf{r}_1, ..., \mathbf{r}_N)$ através de

$$\rho(\mathbf{r}) = \sum_{i=1}^{N} \int d^3 \mathbf{r}_1 \dots d^3 \mathbf{r}_N \ \delta(\mathbf{r} - \mathbf{r}_i) |\Psi|^2 \ . \tag{10.94}$$

Portanto, o potencial de interação neste problema será dado por

$$V(\mathbf{r}) = Z' e^2 \left[\frac{Z}{r} - \int d^3 \mathbf{r}' \, \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \right] \,, \tag{10.95}$$

onde Z é a carga do núcleo e Z' = -1 para o espalhamento de elétrons.

Neste ponto é óbvio que não podemos resolver exatamente este problema, logo utilizaremos a aproximação de Born. A partir de (10.89) podemos concluir (mostre) que esta aproximação é válida se

$$\frac{v}{c} \gg \frac{ZZ'}{137} , \qquad (10.96)$$

onde v (c) é a velocidade do elétron (luz). Note que v não pode ser arbitrária já que a Mecânica Quântica é uma teoria não relativística, e portanto deve ser menor que c.

Na aproximação de Born temos que

$$f_{b} = -\frac{\mu}{2\pi\hbar^{2}} \int d^{2}\mathbf{r} \ e^{-i\mathbf{q}\cdot\mathbf{r}}V(\mathbf{r})$$

$$= \frac{\mu}{2\pi\hbar^{2}\mathbf{q}^{2}} \int d^{3}\mathbf{r} \ \nabla^{2}\left(e^{-i\mathbf{q}\cdot\mathbf{r}}\right)V(\mathbf{r})$$

$$= \frac{\mu}{2\pi\hbar^{2}\mathbf{q}^{2}} \int d^{3}\mathbf{r} \ e^{-i\mathbf{q}\cdot\mathbf{r}}\nabla^{2}V(\mathbf{r}) , \qquad (10.97)$$

onde integramos por partes e ${\bf q}^2=4k^2\sin^2\frac{\theta}{2}.$ Agora utilizando a equação de Poisson

$$\nabla^2 V(\mathbf{r}) = -4\pi Z' e^2 \left(Z\delta(\mathbf{r}) - \rho(\mathbf{r}) \right) , \qquad (10.98)$$

 $^{^{10}\}rm Estamos$ aqui simplificando o problema, já que não consideramos o problema de muitos corpos envolvendo o elétron incidente e os atômicos.

10.8. Aproximação de Born

obtemos que

$$f_b = -\frac{2\mu Z' e^2}{\hbar^2 \mathbf{q}^2} \left(Z - F(\mathbf{q}) \right) , \qquad (10.99)$$

onde o fator de forma Fnada mais é do que a transformada de Fourier de $\rho.$

$$F(\mathbf{q}) = \int d^3 \mathbf{r} \ e^{-i\mathbf{q}\cdot\mathbf{r}}\rho(\mathbf{r}) \tag{10.100}$$

Logo, a seção de choque diferencial deste processo é

$$\frac{d\sigma}{d\Omega} = \frac{4Z'^2}{a_0^2 \mathbf{q}^4} \left| Z - F(\mathbf{q}) \right|^2 \,, \tag{10.101}$$

onde a_0 é o raio de Bohr.

Exercício

Analise esta expressão nos limites $\mathbf{q} \to 0$ e $\mathbf{q} \to \infty$. Mostre que no último limite $d\sigma/d\Omega$ é dado apenas pelo espalhamento pelo núcleo. Interprete fisicamente os seus resultados.