
7 Path Integral in Quantum Mechanics

The central problem of quantum mechanics can be solved once we obtain the following
object

U(xf , tf ;xi, ti) = 〈xf , tf |xi, ti〉 , (7.1)

called the propagator. Knowing U we can evolve the wavefunction in time

ψ(xf , tf ) = 〈xf , tf |ψ〉 =

∫
dxi 〈xf , tf |xi, ti〉 〈xi, ti|ψ〉 ,

=

∫
dxi U(xf , tf ;xi, ti)ψ(xi, ti) . (7.2)

Which means that U(xf , tf ;xi, ti) is the Green function of the equation of motion for the
wavefunction, i.e. of the Schrödinger equation.

We can alternatively write the propagator in terms of the eigenvalues and eigenfunctions
of the hamiltonian H:

U(xf , tf ;xi, ti) = 〈xf |e−iH(tf−ti)/h̄|xi〉 ,
=

∑
n

〈xf |xn〉〈xn|xi〉 e−iEn(tf−ti)/h̄ ,

=
∑
n

e−iEn(tf−ti)/h̄ ψ∗n(xf )ψn(xi) . (7.3)

So we see from (7.3) that the propagator contains the information of all the eigenvalues
and eigenfunctions of H, which is all the dynamical information of the quantum system.
What is typically done is to obtain the En’s and the ψn(x)’s and then the propagator
U(xf , tf ;xi, ti). The path inetgral allows us to get the propagator directly.

7.1 The Conceptual Idea

Let us start from a well known quantum mechanical situation: the two-slit experiment.
The two trajectories, 1 and 2, have different phases (different lengths) and this results in
an interference pattern at the screen where we observe.

We can imagine that there are (infinitely) many screens with (infinitely) many slits each
between the source and the observation screen. The result is that the are (infinitely) many
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Figure 1: Double slit experiment. Different paths lead to different phases at the screen,
which results in an interference pattern.

trajectories with different phases interfering. In general, we can think of the amplitude
for a particle to go from xi to xf as a sum over (infinitely) many trajectories. Only one
of them is the classical trajectory.

Figure 2: Many screens with many slits each. In the limit of infinitely many screens and
infinitely many slits, the amplitude is the sum over all possible trajectories between the
source and the observation point.

We can try to translate this into the propagator. Intuitively, we can write

U(xf , tf ;xi, ti) =
∑

all trajectories

Aeiphase ≡
∫
Dx(t) eiphase . (7.4)

Here, the sum over all the trajectories is signified as an integral where the measure is
accounting for all the possible x(t)’s. The next question is: what should be the phase ?
We know that not all trajectories are equal. The classical trajectory should emerge as
the only possible one in the h̄ −→ 0 limit, the classical limit. We will see bellow that this
happens if
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phase ' S[x(t)]

h̄
, (7.5)

that is, if the phase is given by the action in units of h̄. In this case we would have

U(xf , tf ;xi, ti) =

∫
Dx(t) eiS[x(t)]/h̄ . (7.6)

This choice is clearly consistent with the emergence of the classical trajectory in the
h̄ −→ 0 limit. To see this, we notice that in this limit the phase oscillates very rapidly,
giving rise to cancellations (rapidly oscillating sines and cosines). This is the case for
generic trajectories x(t). However, the classical trajectory is special in that it is stationary.
This means that because

δ S[xcl.(t)] = 0 . (7.7)

In other words, very close to the classical trajectory the contributions to the phase are
coherent , i.e. they have the same sign on both sides.

Figure 3: The pases add coherently on both sides close to the stationary action corre-
sponding to the classical trajectory.

The question is how far can we go on each side of the stationary point before we loose
coherence and cancelations become efficient. If we call Scl. the action associated with the
classical trajectory, it is clear that the sign of the contributions would start changing for
trajectories outside the interval

Scl.

h̄
± π . (7.8)

So trajectories that result in actions with S[x(t)]/h̄ inside this interval should have im-
portant contributions to the amplitude. It is interesting to illustrate this point with a
concrete example.
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Example: Let us consider a free particle of mass m. Its classical trajectory is

xcl(t) = v t , (7.9)

with a constant velocity we will take to be v = 1 cm/s. We will also consider the
alternative trajectory

x(t) = a t2 , . (7.10)

We want the boundaries of both trajectories to be the same. That is, we have the particle
start and finish in the same point, say start at x(0) = 0, and finish at x(1 s) = 1 cm.

Figure 4: Classical trajectory for a free particle and an alternative non-classical one.

With these boundaries, we have that a = 1cm/s2. We compute now the action for the
classical trajectory. We have

S[xcl.(t)] =

∫ 1

0

1

2
mẋ2

cl. dt =
1

2
mv2(1 s) . (7.11)

On the other hand, the alternative trajectory gives

S[x(t)] =

∫ 1

0

1

2
mẋ(t)2 dt = 2ma2

∫ 1

0

t2 dt =
2

3
ma2(1 s3) . (7.12)

The difference between the two actions then is

∆S = (
2

3
− 1

2
)m cm2/s ,

∆S =
1

6
m
cm2

s2
s . (7.13)
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We want to see under what circumstances |∆S/h̄| ≤ π. So let us take two values for the
mass m.

1. m = 1 g:

Given that h̄ = 1.05× 10−34 J s = 1.05× 10−27 erg.s we have

∆S =
1

6
erg.s =

1

6
× 1027 h̄ (7.14)

or

∆S

h̄
' 1026 � π . (7.15)

So we see that a particle with m = 1 g cannot go through this alternative trajectory,
and we can actually conclude that it would be forced to stay in trajectories incredibly
close to the classical one.

2. me = 9× 10−28 g: The electron mass. Repeating the calculation we see that here
we get

∆S

h̄
' 1

6
< π , (7.16)

so the electron has a lot of room to go into trajectories completely different from
the classical given its small mass. In general, if the action is of the order of h̄ or
smaller the system will present quantum behavior. If, on the contrary, the action
is large in units of h̄ then de-coherence effects set quickly in and only the classical
trajectory emerges.

7.2 Derivation of the Path Integral

Starting with the propagator associated with an infinitesimal time difference ∆t, we would
like to prove the following identity

〈x1, t+ ∆t|x0, t〉 = c ei(L(t) ∆t+O((∆t)2))/h̄ . (7.17)

In the above expression c is a constant we will compute, L(t) is the lagrangian at time t,
and we will be working at first order in ∆t. We consider the hamiltonian

H =
p2

2m
+ V (x) , (7.18)
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which then we can use to write

〈x1, t+ ∆t|x0, t〉 = 〈x1|e−iH ∆t/h̄|x0〉 (7.19)

Going to momentum space, we insert a complete set of momentum states as in

〈x1, t+ ∆t|x0, t〉 =

∫
dp 〈x1|p〉〈p|e−iH ∆t/h̄|x0〉 . (7.20)

The first factor in the integral above is the momentum space representation of the wave
function

〈x1|p〉 =
1√
2πh̄

eip x1/h̄ . (7.21)

The second factor can be expanded for small values of ∆t as

〈p|eiH ∆t/h̄|x0〉 = 〈p|
(

1− i

h̄
H ∆t+O((∆t)2)

)
|x0〉 ,

=

(
1− i

h̄

p2

2m
∆t− i

h̄
V (x0)∆t+O((∆t)2)

)
〈p|x0〉 . (7.22)

The last factor in (7.22) is just the complex conjugate of the momentum representation
of the wave-function at x0, i.e.

〈p|x0〉 =
1√
2πh̄

e−i p x0/h̄ . (7.23)

Putting (7.21) and (7.22) back into (7.20) we obtain

〈x1, t+ ∆t|x0, t〉 =

∫
dp

2πh̄
eip(x1−x0)/h̄ e−i(p

2/2m+V (x0))∆t/h̄ ,

=

∫
dp

2πh̄
ei(p(x1−x0)−(p2/2m)∆t−V (x0)∆t)/h̄ , (7.24)

where in the first line we have re-exponentiated the last factor which is valid for infinites-
imal ∆t. In order to do the momentum integral we complete the square. For this we see
that we cen write
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i

h̄

∆t

2m

(
2m

∆t
p(x1 − x0)− p2

)
= − i∆t

h̄2m

(
p− m

∆t
(x1 − x0)

)2

+
i

h̄

m

2∆t
(x1− x0)2 , (7.25)

which means we can rewrite (7.24) as

〈x1, t+ ∆t|x0, t〉 = e
i
h̄

[ m
2∆t

(x1−x0)2−V (x0)∆t]

∫
dp

2πh̄
e−

i
h̄

∆t
2m

[p− m
∆t

(x1−x0)]2 . (7.26)

The integral in (7.26) can be done using

∫ +∞

−∞
dp e−a [p−b]2 =

√
π

a
, (7.27)

which results in

〈x1, t+ ∆t|x0, t〉 =

√
m

2πh̄i∆t
e

i
h̄

[ 1
2
m

(x1−x0)2

(∆t)2
−V (x0)] ∆t

. (7.28)

Noticing that

(x1 − x0)

∆t
= ˙x(t) +O((∆t)2) , (7.29)

we finally obtain

〈x1, t+ ∆t|x0, t〉 =

√
m

2πh̄i∆t
e

i
h̄
L(t) ∆t+O((∆t)2) , (7.30)

which is (7.17), which we wanted to prove. We can now apply this result for the propagator
for an infinitesimal time shift to build the propagator for finite time differences tf − ti.
For this we first consider a discretized interval such that

tf − t1 = N ×∆t , (7.31)

such that we have N differential time intervals.

The amplitude can then be written as
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Figure 5: Finite interval discretized into N infinitesimal intervals of ∆t.

〈xf , tf |xi, ti〉 =∫
〈xf , tf |xN−1, tN−1〉 dxN−1 〈xN−1, tN−1|xN−2, tN−2〉 dxN−2 〈xN−2, tN−2| . . .

. . . dx2 〈x2, t2|x1, t1〉 dx1 〈x1, t2|xi, ti〉 , (7.32)

which each of the matrix elements for each infinitesimal interval of the form of (7.30).
Then we can write

〈xf , tf |xi, ti〉 =
( m

2πh̄i∆t

)N/2
∫ (

N−1∏
j=1

dxj

)
e

i

h̄

N∑
j=1

L(tj) ∆t

, (7.33)

which when taking the N −→ ∞ and ∆t −→ 0 limits, can be written in the compact
form

〈xf , tf |xi, ti〉 =

∫
Dx(t) e

iS[x(t)]
h̄ , (7.34)

where we defined

∫ xf

xi

Dx(t) ≡ lim
N→∞,∆t→0

( m

2πh̄i∆t

)N/2
∫
dxN−1

∫
dxN−2· · ·

∫
dx2

∫
dx1 . (7.35)

7.3 Matrix Elements of Operators

We start with the following example

〈xf , tf |x(t0)|xi, ti〉 =

∫
dx(t0) 〈xf , tf |x(t0), t0〉x(t0) 〈x(t0), t0|xi, ti〉 , (7.36)
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where we have inserted the identity in the form of the integral over x(t0), and we have
acted with the operator on the ket such that

x(t0)|x(t0), t0〉 = x(t0)|x(t0), t0〉 , (7.37)

so that we are integrating over the eigenvalues. Assuming that ti < t0 < tf , we can write

〈xf , tf |x(t0)|xi, ti〉 =

∫
dx(t0)

∫ tf

t0

Dx(t) eiS[x(t)]/h̄ x(t0)

∫ t0

ti

Dx(t) eiS[x(t)]/h̄

=

∫ tf

ti

Dx(t)x(t0) eiS[x(t)]/h̄ . (7.38)

We see from (7.38) that the expectation value of the operator looks like an average being
weighted by the exponential of the action, integrated over a functional measure. With
the appropriate normalization this “statistical” interpretation will play an important role
in the applications of the path integral to statistical mechanics and condensed matter
systems.

We can generalize this for the product of operators. We start with the product of two
operators, assuming that t1 < t2 and following the steps that lead to (7.38)

〈xf , tf |x(t2)x(t1)|xi, ti〉 =

∫
dx(t2) 〈xf , tf |x2, t2〉x(t2) 〈x2, t2|x1, t1〉x(t1) 〈x1, t1|xi, ti〉 dx(t1) .

(7.39)

This can be written as

〈xf , tf |T (x(t2)x(t1))|xi, ti〉 =

∫
Dx(t)x(t2)x(t1) eiS[x(t)]/h̄ , (7.40)

where we defined the time ordering operator T as

T (O(t1)O(t2)) =


O(t1)O(t2), for t1 > t2 ,

O(t2)O(t1), for t2 > t1 ,
(7.41)

Finally, we can generalize this results for the time ordered product of many operators by

〈xf , tf |T (x(t1) . . .x(tn))|xi, ti〉 =

∫
Dx(t)x(t1) . . . x(tn) eiS[x(t)]/h̄ , (7.42)
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It is interesting to note that in both (7.40) and (7.42) the path integral on the right hand
side contains the products of eigenvalues and not operators. So the products inside the
path integrals in these expressions are not time-ordered, even when we are calculating the
matrix elements of time-ordered products.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
9.1.

• Quantum Field Theory, by C. Itzykson and J. Zuber, Chapter 9.1.1.

• Modern Quantum Mechanics, by J. J. Sakurai, Chapter 2.5.
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