
Lecture 9

Spontaneous Breaking of Continuous
Global Symmetries

In what follows, we will formalize some of the results we have encountered in the con-
text of Bose-Einstein condensation and superfluidity. Namely, that the appearence of a
non-trivial ground state, characterized there by the non-zero value of the density macro-
scopically populating the zero-momentum state at low temperatures, is associated with
the appearence of a massless (or sometimes referred to as gapless ) excitation in the spec-
trum. We will see bellow that this is always the case when the ground state of the system
is not invariant under the symmetries of the Hamiltonian. This mismatch is what is
called spontaneous symmetry breaking, and in the case of a continuous symmetry it leads
to the appearance of gapless excitations, the so-called Nambu-Goldstone states. Below,
we approach this subject through a simple quantum mechanical derivation of the Gold-
stone theorem. The simplest example, that of a complex scalar field with a non-trivial
ground state, is reviewed after that, and formalizes our description of a superfluid from
the previous lecture, in particular the appearance of a massless state.

9.1 Spontaneous Breaking and Gapless Excitations

Noether’s theorem tells us that for each continuous symmetry in the Lagrangian L(φ, ∂µφ)
there is a conserved current Jµ, i.e.1

∂µJ
µ = 0 . (9.1)

We can restate this by saying that the charge associated with this symmetry

1Here we go back to relativistic notation and Minkowski space.
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Q =

∫
d3x J0 , (9.2)

is conserved. This is easily checked by computing

dQ

dt
=

∫
d3x ∂0J

0 =

∫
d3x ~5 · J =

∫
S∞

ds · J = 0 , (9.3)

where in the last step we assume there are no sources at infinity.

Now, in the presence of a continuous symmetry, quantum states transform under the
symmetry as

|ψ〉 → eiαQ |ψ〉 , (9.4)

where α is a real constant, i.e. a continuous parameter. In particular, if the ground state
is invariant under the symmetry this means that

|0〉 → eiαQ|0〉 = |0〉 , (9.5)

with the last equality implying

Q|0〉 = 0 . (9.6)

In other words, if the ground state is invariant under a continuous symmetry the associated
charge Q annihilates it. This is the normal realization of a symmetry.

But if

Q|0〉 6= 0 , (9.7)

then this means that

|0〉 → eiαQ|0〉 ≡ |α〉 6= |0〉 , (9.8)

where we defined the states |α〉 by the continuous parameter of the transformation con-
necting it to the ground state. In general, this is the situation when a symmetry is broken.
But it is possible to have (9.7) and still have a conserved charge. In other words to have

dQ

dt
= 0 . (9.9)
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Having both (9.7) and (9.9) satisfied at the same time corresponds to what we call spon-
taneous symmetry breaking (SSB): the charge is still conserved, but the ground state is
not invariant under a symmetry transformation.

(
Q|0〉 6= 0,

dQ

dt
= 0

)
⇒ SSB . (9.10)

For instance, this is what happens in a ferromagnet below a critical temperature. The
free energy

F = E − TS , (9.11)

can be minimized, at high temperature, by increasing the entropy S. So at high T disorder
rules. However, below a critical temperature, the free energy would be minimized by min-
imizing E, which is achieved by aligning the interacting spins, resulting in a macroscopic
magnetization. This is an ordered phase. But since the magnetization picks a direction in
space it corresponds to the spontaneous breaking the symmetry of the system, i.e. O(3).

Since the charge is conserved we have that [H,Q] = 0. Then, given a Hamiltonian H
acting on a state |α〉 connected to the ground state, we can write

H|α〉 = HeiαQ|0〉 = eiαQH|0〉 = E0e
iαQ|0〉

= E0|α〉 . (9.12)

So we conclude that (9.10) results in a continuous family of degenerate states |α〉 with the
same energy of the ground state, E0. Going from the ground state |0〉 to the |α〉 states
costs no energy. These are the gapless states characteristic of SSB. They are the Nambu-
Goldstone modes. In a relativistic quantum field theory they correspond to massless
particles, as we will see in the following example.

9.2 Spontaneous Breaking of a Global U(1) Symme-

try

We will consider a complex scalar field, the simplest systems to illustrate the spontaneous
breaking of a global symmetry and the appearance of massless particles. This is the
relativistic version of the superfluid. The Lagrangian is

L =
1

2
∂µφ

∗∂µφ− 1

2
µ2φ∗φ− λ

4
(φ∗φ)2 . (9.13)
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As we well know, L is invariant under the U(1) symmetry transformations

φ(x)→ eiαφ(x) , φ∗(x)→ e−iαφ∗(x) , (9.14)

where α is a real constant. Here the U(1) symmetry is equivalent (isomorphic) to a
rotation in the complex plane defined by

φ(x) = φ1(x) + iφ2(x) , φ∗(x) = φ1(x)− iφ2(x) , (9.15)

where φ1,2(x) are real scalar fields. Then we see that U(1) ' O(2). For instance, had we
started with a purely real field φ(x) = φ1(x), i.e. φ2(x) = 0, the U(1) transformations
(9.14) would result in

φ(x) = φ1(x)→ cosαφ1(x) + i sinαφ1(x) , (9.16)

as illustrated in Figure 9.1 below.

1

Figure 9.1: The U(1) rotation φ→ eiαφ for an initially real field.

We now consider the (classical) potential

V =
1

2
µ2φ∗φ+

λ

4
(φ∗φ)2 . (9.17)

For µ2 > 0 V has a minimum at (φ∗φ)0 = 0. On the other hand, if µ2 < 0 there is a non
trivial minimum for λ > 0 resulting from the competition of the first and second terms in
(9.17). Redefining

µ2 ≡ −m2 , (9.18)
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with m2 > 0, the minimum of the potential now is

(φ∗φ)0 =
m2

λ
≡ v2 . (9.19)

Here v2 is the expectation value of the φ∗φ operator in the ground state, i.e.

〈0|φ∗φ|0〉 = v2 . (9.20)

The potential looks just as the one for the superfluid case in the previous lecture, shown
in Figure 8.1. The projection onto the (φ1, φ2) plane is shown in Figure 9.2 below.

2

1

v

Figure 9.2: The red circle represents the locus points of the minimum of the potential
(9.17) for µ2 < 0. The radius is v, a real number. The phase is not determined by the
minimization.

The radius is fixed through

(φ∗φ)0 = v2 = φ2
1 + φ2

2 , (9.21)

but the phase is undetermined. We need to fix it in order to choose a ground state to
expand around. Any choice should be equivalent
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〈φ1〉 = v 〈φ2〉 = 0

〈φ1〉 =
v√
2

〈φ2〉 =
v√
2

...
...

〈φ1〉 = 0 〈φ2〉 = v .

This particular choice is what constitutes spontaneous symmetry breaking. We need to
fix the phase θ = θ0 arbitrarily in order to expand around this ground state. For instance,
let us choose the first line above, i.e. 〈φ1〉 = v, and 〈φ2〉 = 0. This allows us to expand
the field φ(x) around this ground state as

φ(x) = v + η(x) + iξ(x) , (9.22)

where η(x) and ξ(x) are real scalar fields statisfying

〈0|η(x)|0〉 = 0, 〈0|ξ(x)|0〉 = 0 . (9.23)

This obviously corresponds to φ1(x) = v + iη(x) and φ2(x) = ξ(x). We can now rewrite
the Lagrangian (9.13) in terms of η(x) and ξ(x). This is

L =
1

2
∂µη∂

µη +
1

2
∂µξ∂

µξ +
1

2
m2 (v + η − iξ) (v + η + iξ)

−λ
4

[(v + η − iξ) (v + η + iξ)]2 , (9.24)

where we used (9.18). Using (9.19) and focusing on the terms quadratic in the fields, we
obtain

L =
1

2
∂µη∂

µη +
1

2
∂µξ∂

µξ −m2η2 + interactions . (9.25)

So we see that when we expand around the ground state defined by (9.22) we end up with
a theory of a real scalar field with mass (η) and a massless state ξ. That is

mη =
√

2m, mξ = 0 . (9.26)

This result is a reflection of Goldstone’s theorem: a spontaneously broken continuous
symmetry, here a U(1), results in massless states. Notice that the result would be exactly
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the same had we chosen any other angle in Figure 9.2 instead of θ = 0. One simple way
to check this is to use a different parametrization of φ(x). We write

φ(x) ≡ [v + h(x)] eiπ(x) , (9.27)

where h(x) and π(x) are real scalar fields, also satisfying

〈0|h(x)|0〉 = 0, 〈0|π(x)|0〉 = 0 . (9.28)

Then from (9.27) it is pretty obvious that π(x) does not enter in the potential, and
therefore will not have a mass term. It is very simple to obtain the Lagrangian (9.13) in
terms of h(x) and π(x) using (9.27). This is

L =
1

2
∂µh∂

µh+
1

2
∂µπ∂

µπ −m2h2 + interactions , (9.29)

which is exactly the same theory as the one in (9.25), i.e. a massive state with mh =
√

2m
and a massless particle, here the π(x).

We will later see a derivation of Goldsone’s theorem that is more geared towards quantum
field theory. We will see that there will be a NGB for each broken symmetry generator,
i.e. for each spontaneously broken symmetry.

Additional suggested readings

• Condensed Matter Field Theory, Altland and Simons, Section 6.3.

• Dynamics of the Standard Model, J. F. Donoghue, E. Golowich and B. Holstein,
Chapter I-5.


