
Lecture 5

Quantum Field Theory and
Many-body Systems

So far we have considred aplications of quantum field theory (QFT) for either relativistic
systems or the long range behavior of many-body systems such as a ferromagnet. Here we
will start studying systems of a large number of particles and develop statistical methods
to deal with them. We will also introduce temperature in the treatment. The tools of
QFT we have developed so far will be also applicable here, with some minor adjustments.
But we also need to incorporate a few new elements. The aim is to describe many-
body systems at finite temperature. Applications will be mostly in condensed matter
physics although there are some also in cold atoms and nuclear physics. We describe these
systems by writing their partition functions as functional integrals. This will give us an
interesting way to introduce the collective phenomena associated with symmetry breaking
in condensed matter physics. We will first review quickly some basics of thermodynamics
and statistical mechanics that we will be using next. We will then introduce coherent
states so as to have all the elements that will allow us to write the partition function as
a functional integral.

5.1 Thermodynamics and Statistical Mechanics

The internal energy of a closed systems (i.e. with a fixed number of particles N) is

dE = dQ− dW = T dS − P dV , (5.1)

where Q stands for heat, T is the temperature of the system, S its entropy, P the pressure
and V the volume. For N variable we introduce the chemical potential contribution, so
now we have

1
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dE = T dS − P dV + µ dN . (5.2)

The thermodynamic potentials of interest are the Helmholtz free energy F and the Gibbs
free energy G. F is defined by

F ≡ E − T S , (5.3)

which translates into

dF = −S dT − P dV + µ dN , (5.4)

showing that F is a function of T , V and N . On the other hand, the Gibbs free energy
is defined by

G ≡ E − T S − P V = F − P V , (5.5)

resulting in

dG = −S dT + µ dN − V dP , (5.6)

which means that G is a function of T , P and N instead. We will be mainly concerned
with systems at fixed P , so we will make use of the Helmholtz free energy F . In partic-
ular, we notice that in minimizing F there is a competition between the internal energy
minimization and disorder, the latter represented by the second term, which is minimized
for larger values of S.

For fixed number of particles N , the probability of the so-called canonical ensamble is
given by

Pc =
1

ZN
e−βE , (5.7)

where β = 1/T , E is the eigenvalue of the energy and ZN is the partition function of the
canonical ensamble

ZN = Tr
[
e−βH

]
. (5.8)

The trace above is taken over all the states of the system, and it can include continuous
spatial and/or momentum indexes. The grand canonical ensamble allows for the variation
of N . In this case the probability is
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Pgc =
1

Z
e−β(E−µN) , (5.9)

where the partition function Z is now a function of T µ and V and is given by

Z = Tr
[
e−β(H−µN)

]
. (5.10)

Another way pf writing Z is in terms of the canonical partition function ZN . This is

Z(T, µ, V ) =
∑
N

eβµN ZN(T, V ) . (5.11)

Then the Helmholtz free energy F can be written in terms of ZN . For this purpose, we
first notice that

ZN =

∫
dE ω(E)e−βE , (5.12)

where ω(E) is the density of states with eigenvalue of the hamiltonian E. The expression
(5.12) is just an integral form of (5.8). The density of states ω(E) enters in the expression
of the entropy S since

S = ln [ω(E) ∆E] , (5.13)

where the argument of the logarithm is just the number of states with energies between
E and E + dE. But then we can write

ω(E) =
eS

δE
. (5.14)

Replacing this in (5.12) we have

ZN =

∫
dE

1

∆E
e−β(E−TS) , (5.15)

which can be readily approximated to be

ZN ' e−β(〈E〉−TS) , (5.16)

where we replaced E by its thermal average. This is the case since
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ω(E) e−βE , (5.17)

peaks at 〈E〉 and effectively acts as a delta function. We then can write

F = −T ln [ZN ] . (5.18)

5.2 Second Quantization

We will review here some aspects of second quantization. We are mainly interested in
showing how to write operators in terms of creation and annihilation operators. We
start with the action of creation and annihilation operators on the eigenstates of the
hamiltonian.

a |n〉 =
√
n |n− 1〉

a† |n〉 =
√
n+ 1 |n+ 1〉 (5.19)

We are interested in the occupation number representation, which allows us to write states
as

|n1, n2, . . . , nj, . . . 〉 . (5.20)

In the state above, the subscripts i are labels defining the state, such as momentum,
position or spin, among others. The ni’s are the number of particles in each of the states.
These are states belonging to Fock space. In them, the total number of particles is not
fixed. We could imagine that these states belong to the direct sum of spaces with fixed
total number of particles N . In this way, the states with fixed N written as

|n1, n2, . . . , nN〉 , (5.21)

satisfy
∑

j nj = N . The states in (5.21) span a Hilbert space we call FN . Then the states
in (5.20) defined the Fock space as

F = ⊕∞N=0FN (5.22)

Coming back to the variable N states from (5.20), the action of creation and annihilation
operators is
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aj |n1, . . . , nj, . . . , 〉 =
√
nj |n1, . . . , nj − 1, . . . 〉 (5.23)

a†j |n1, . . . , nj, . . . , 〉 =
√
nj + 1 |n1, . . . , nj + 1, . . . 〉 . (5.24)

We can then rewrite the states (5.20) as

|n1, n2, . . . , nj, . . . 〉 =
∏
j

1√
nj!

(
a†j

)nj

|0〉 . (5.25)

Of course, the annihilation and creation operators above satisfy the commutation rela-
tions 1

[ai, aj] = 0 = [a†i , a
†
j] , [ai, a

†
j] = δij . (5.26)

5.2.1 One-body Operators

These are single-particle operators that act on the states (5.20). We would like to write
them interms of annihilation and creation operators. A first step is to consider a generic
operator as expanded in terms of the states {|α〉} as

Â =
∑
α,β

Aαβ |α〉〈β| , (5.27)

where Aαβ = 〈α|A|β〉 is the matrix element of the operator. The action of (5.27) on a
generic multi-particle state is

Â |ψ1, . . . , ψj, . . . 〉 =
∑
αβ

Aαβ
∑
j

〈β|ψj〉 |ψ1, . . . , α, . . . 〉 . (5.28)

But this is the same we would obtain if we replaced

Â =
∑
αβ

Aαβ a†αaβ , (5.29)

1Here we are considering the example of bosons. The case of fermions will carry the appropriate signs
resulting from using anti-commutation relations instead.
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which is valid in general, even for fermions. The detailed proof of (5.29) is a bit more
involved when done generally, but is enough to see here that it works.

More transparently, if the operator Â is diagonal in the basis {|α〉}, then we have

Â =
∑
α

Aαa†αaα =
∑
α

Aαn̂α , (5.30)

where n̂α is the number operator counting the number of particles in the state |α〉, and
therefore the sum is just adding up the number of particles with this eigenvalue times
the eigenvalue. As a first simple example let us consider the momentum operator in one
dimension

p̂ =
∑
pi

pi |pi〉〈pi| , (5.31)

where it is obvious that the operator p̂ is diagonal in the basis {|pi〉}, with {pi} the
eigenvalues. Then we can write the second quantization form as

p̂ =
∑
pi

pi a
†
pi
api =

∑
pi

pi n̂pi . (5.32)

Then, when acting on a state

p̂ |n1, . . . , ni, . . . 〉 =
∑
pi

pi ni |n1, . . . , ni, . . . 〉 , (5.33)

p̂ will be summing up all the momenta of all particles by counting with n̂ how many
have each eigenvalue, resulting in the total momentum eigenvalue. We can generalize this
for any operator that is a function of p̂. For instance the kinetic energy in momentum
representation is

T̂ =
∑
pi

p2
i

2m
a†pi api =

∑
pi

p2
i

2m
n̂pi . (5.34)

5.2.2 Field Operators

Here we will introduce the operators a(x) and a†(x) that annihilate and create particle
at a given position x. They are related to the ones creating and annihilation states of
definite momentum by the Fourier transforms
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a(x) =
1√
Ld

∑
p

ap e
ip·x

(5.35)

a†(x) =
1√
Ld

∑
p

a†p e
−ip·x ,

where we are considering a finite d dimensional volume V = Ld and, as a consequence,
the momentum is quantized as in

p =
2πm

L
, (5.36)

where m = (m1,m2, . . . ,md) with the mi integers. We call this position representation
of the annihilation and creation operators field operators since they do resemble the
fields as we defined them before in terms of the momentum ones. The missing terms
corresponding to the anti-particles are not present here since we are dealing in principle
with non-relativistic systems. This is why we use a and a† in the notation for the left
hand sides of (5.35). As an example, let us consider the kinetic energy operator in the
position representation. As we will see below, the correct form must be

T̂ =

∫
ddx a†(x)

p̂2

2m
a(x) , (5.37)

where p̂ = −i~∂, the momentum operator in position space. We can easily verify that
this way of writing the kinetic term in (5.37) results in (5.34), once we use the Fourier
transforms (5.35) and the fact that

1

Ld

∫
ddx e−i(p1−p2)·x = δp1−p2 . (5.38)

Then the one-body hamiltonian in position space would be

Ĥ =

∫
ddx a†(x)

(
p̂2

2m
+ U(x)

)
a(x) , (5.39)

where U(x) is the one-particle potential. Using (5.35) and the definition

Up1−p2 ≡
1

Ld

∫
ddx e−i(p1−p2)·x U(x) , (5.40)
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we arrive at

Ĥ =
∑
p

p2

2m
a†pap +

∑
p1,p2

Up1−p2 a
†
p1
ap2 . (5.41)

We see in the second term above that we can think of the one-particle potential in mo-
mentum space representation as taking a particle of momentum p2, making it interact
with the potential, and then creating a particle of momentum p1.

5.2.3 Two-body Operators

Operators acting on two particles in a given state can be expanded in terms of annihilation
and creation operators as

Â =
∑
α,β,γ,δ

Aαβγδ a†αa
†
βaγaδ . (5.42)

We are specifically interested in operators resulting in interactions between two particles.
For instance, let us consider a symmetric two-body interaction potential

V (x,y) = V (y,x) . (5.43)

We want to find the form of the operator V̂ in the second quantized language. In partic-
ular, when applied to an N -particle state it should satisfy

V̂ |x1,x2, . . . ,xN〉 =
1

2

∑
i 6=j

V (xi,xj) |x1,x2, . . . ,xN〉 . (5.44)

It is possible to prove that the correct form of V̂ is

V̂ =
1

2

∫
ddx

∫
ddy V (x,y)a†(x)a†(y)a(y)a(x) . (5.45)

Before we prove that (5.45) is the correct expression for V̂ , we can see that it satisfies

〈0|V̂ |0〉 = 0 . (5.46)

Although we know that we need a†(x), a†(y), a(x) and a(y), their ordering could be
different that the one given in (5.45). The chosen ordering, which guarantees (5.46),
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is called normal ordering. Had we chosen a different ordering of the annihilation and
creation operators in (5.45), we would have ended with an undesirable and ill-defined
self-interaction term. Normal ordering avoids this. In the formulation of QFT we went
through in the first part of the course, normal ordering is closely related with Wick
theorem.

To prove (5.45), we just apply V̂ as defined by it on a multi-particle state |x1,x2, . . . ,xN〉
and check that we obtain the right hand side of (5.44). We first notice that

a†(x)a†(y)a(y)a(x)|x1, . . . ,xN〉 = a†(x)a†(y)a(y)a(x)a†(x1) . . . a†(xN) |0〉

=
N∑
j=1

δ(3)(x− xj)a
†(xj)a

†(y)a(y)a†(x1), . . . , a†(xj−1)a†(xj+1), . . . , a†(xN)|0〉

=
N∑
j=1

δ(3)(x− xj)a
†(y)a(y)a†(x1), . . . , a†(xj−1)a†(xj)a

†(xj+1), . . . , a†(xN)|0〉 .(5.47)

In the last step we carry through the a†(xj) (obtained from the first factor a†(x) by using
the δ function) to go back to the place where we had taken it from due to the use of the
commutation relation

[a(x), a†(xj)] = δ(3)(x− xj) . (5.48)

In doing so we used the fact that x 6= y, so that the operators evaluated in x and y
commute. We can now do the same for a†(y)a(y). This results in

a†(x)a†(y)a(y)a(x)|x1, . . . ,xN〉 =
N∑
j=1

δ(3)(x− xj)
N∑
k 6=j

δ(3)(y − xk)|x1, . . . ,xN〉 . (5.49)

If we now multiply by V (x,y)/2 and integrate over x and y as indicated in (5.45) we then
obtain the right-hand side of (5.44), proving that (5.45) is the correct expression for the
second-quantized interaction potential in position space.

To conclude, we want to see how V̂ looks in momentum space. Starting from (5.45) and
using (5.35) we have

V̂ =
1

2

∫
ddxddy V (x− y) a†(x)a†(y)a(y)a(x)

(5.50)

=
1

2L2d

∫
ddxddy

∑
p1,p2,p3,p4

e−i(p1·x+p2·y−p3·y−p4·x)V (x− y)a†p1
a†p2

ap3ap4 ,
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where we have imposed translation invariance so that the potencial depends on the dif-
ference of the positions, i.e. we have V (x− y). We change variables to z = x− y and y.
In terms of these we have now

V̂ =
1

2L2d

∑
p1,p2,p3,p4

a†p1
a†p2

ap3ap4

∫
ddzV (z)e−i(p1−p4)·z Ld δp1+p2−p3−p4 , (5.51)

where we used (5.38) to get the last factor. If we define

q = p3 − p2 , (5.52)

we can rewrite V̂ as

V̂ =
1

2

∑
p1,p2,q

a†p1
a†p2

ap2+q ap1−q Vq , (5.53)

where we defined the Fourier transform of the potential as

Vq ≡
1

Ld

∫
ddz V (z) e−iq·z . (5.54)

We can interpret this result as having V̂ annihilating two particles of momenta p1 − q
and p2 +q in the initial state, and then creating two particles of momenta p1 and p2. To
put it in a more familiar form, we can simply shift the initial momenta by q as in

p1 → p1 + q

(5.55)

p2 → p2 − q ,

which allows us to rewrite (5.53) as

V̂ =
1

2

∑
p1,p2,q

a†p1+q a
†
p2−q ap2 ap1 Vq . (5.56)

which corresponds to the annihilation of two particles of initial momenta p1 and p2 and
the creation of two particles with momenta p1 + q and p2 − q. This process can be
schematically represented by the diagram of Figure 5.1 below.
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+ q p
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q

Figure 5.1: Diagram corresponding to the action of V̂ in momentum space, from equation
(5.56).

We can see that, as expected, imposing translation invariance resulted in an interaction
that conserves momentum. The wavy line in the diagram above should be understood as
simply signifying the action of the two-particle potential. At this point it does not imply
that there is a virtual particle propagating between the two fermion lines. However, these
diagrams are very useful and there are related with the ones we would obtain had we
taken the non-relativistic limit of a given relativistic interaction. We will later see how
these diagrams are used in perturbation theory in many body theory.

5.3 Coherent States

We have seen that many particle hamiltonians can be conveniently expressed in terms
of annihilation and creation operators. Then, when building a funcional integral of a
many-body theory it will be advantageous to formulate it in terms of eigenstates of these
operators. These are the so-called coherent states. Here we will review some of their
properties before we use them to build a functional integral representation of the partition
function of a many-body system.

5.3.1 Coherent States of the Harmonic Oscillator

We are looking for eigenstates of the annihilation operator a. We know that the eigenstates
of the hamiltonian satisfy

a|n〉 =
√
n|n− 1〉 . (5.57)

We define a coherent state |α〉 by

a|α〉 = α|α〉 . (5.58)
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Clearly, the state |α〉 can be written as a linear combination of the eigenstates of the
hamiltonian as

|α〉 =
∞∑
n=0

cn|n〉 , (5.59)

which results in

a|α〉 =
∞∑
n=0

cn
√
n|n− 1〉 . (5.60)

Comparing (5.60) with (5.58) we see that the coefficients of the expansion defined by
(5.59) must satisfy the recursion relation

cn+1 = α
cn√
n+ 1

. (5.61)

Thus, the coherent state |α〉 can be expanded using (5.61) as

|α〉 = c0

(
|0〉+ α

|1〉√
1!

+ α2 |2〉√
2!

+ . . .

)
. (5.62)

Using that

|n〉 =
(a†)n√
n!
|0〉 , (5.63)

we can rewrite (5.62) as

|α〉 = c0

(
1 + α

a†

1!
+ α2 (a†)2

2!
+ . . .

)
|0〉

= c0 e
αa† |0〉 . (5.64)

Demanding that 〈α|α〉 = 1 fixes c0. We then finally obtain

|α〉 = e−|α|
2/2 eαa

† |0〉 (5.65)

Notice that since a is not hermitian, the eigenvalue α is in general a complex number.
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5.3.2 Coherent States in Many-body Theory

Following the discussion above for the coherent states of the harmonic oscillator, we would
like to build coherent states from the eigenstates in the occupation number representation
of many-body theory. That is, starting with states defined by

|n1, n2, . . . 〉 =
(a†1)n1

√
n1!

(a†1)n2

√
n2!

. . . |0〉 , (5.66)

we want to define a coherent state by

|φ〉 =
∑

n1,n2,...

Cn1,n2,... |n1, n2, . . . 〉 , (5.67)

which is a superposition of states with different number of particles. The state |φ〉 should
be an eigenstate of the annihilation operators aj, where the index j refers to a given single
particle state. That is, we want

aj|φ〉 = φj|φ〉 , (5.68)

where the eigenvalue φj is a complex number, just as α in (5.67) was. In order to satisfy
(5.68) we write

|φ〉 = e
∑

i φia
†
i |0〉 . (5.69)

To prove that the state written as in (5.69) satisfies (5.68) we expand |φ〉. We have

aj|φ〉 = aj

(
1 +

∑
i

φia
†
i +

1

2!

∑
i

φia
†
i

∑
k

φka
†
k + . . .

)
|0〉 . (5.70)

Using the commutation rules (we are assuming bosons for now)

[aj, a
†
i ] = δji , (5.71)

we obtain
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aj|φ〉 =

(
φj + φj

∑
k

φka
†
k + . . .

)
|0〉

= φj

(
1 +

∑
k

φka
†
k + . . .

)
|0〉

= φj e
∑

k φka
†
k |0〉 , (5.72)

just as postulated in (5.68). Then, the sates |φ〉 defined this way are coherent states and
will be very useful when using operators in second quantization language. They will be
the building blocks of the functional integral formulation of the partition function. Before
we go into this, it will be useful to get to know some of the properties of these states.

1. The conjugate state satisfies

〈φ|a†j = 〈φ|φ̄j , (5.73)

with φ̄j the complex conjugate of φj. This means that it can be expanded in term
of annihilation operators as in

〈φ| = 〈0| e
∑

k φ̄kak . (5.74)

2. The following identity is satisfied:

a†j|φ〉 = ∂φj |φ〉 , (5.75)

where we defined

∂φj =
∂

∂φj
. (5.76)

To prove (5.75) we use the expansion for |φ〉 in (5.69). Then the right-hand side of
(5.75) is
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∂φj |φ〉 = ∂φje
∑

k φka
†
k |0〉

= ∂φj

(
1 +

∑
k

φka
†
k +

1

2

∑
k,`

φka
†
kφ`a

†
` + . . .

)
|0〉 (5.77)

= a†j

(
1 +

∑
k

φka
†
k + . . .

)
|0〉

= a†j|φ〉 , (5.78)

which proves (5.75). Finally, it is straightforward to prove that the complex conju-
gate of (5.75) is

〈φ|aj = ∂φ̄j〈φ| . (5.79)

3. Coherent States are not orthogonal.

For instance, take two coherent states |φ〉 and |θ〉. Their inner product is

〈θ|φ〉 = 〈0|e
∑

k θ̄kak |φ〉 , (5.80)

where we used (5.74). Using the repeated action of ak on |φ〉 as defined by (5.68)
we have

〈θ|φ〉 = e
∑

k θ̄kφk〈0|φ〉 . (5.81)

But since 〈0|φ〉 = 1 (check this!) we have that

〈θ|φ〉 = e
∑

k θ̄kφk . (5.82)

In particular, the norm of a coherent state is not unity. It is given by

〈φ|φ〉 = e
∑

k φ̄kφk . (5.83)
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4. Resolution of the identity in Fock space.

The following identity is satisfied by coherent states:

∫ ∏
i

dφ̄idφi
π

e−
∑

k φ̄kφk |φ〉〈φ| = 1F . (5.84)

In the expression above, the right-hand side corresponds to the identity in Fock
space. The integrals are over all possible values of φi and of φ̄i. This identity will
be very important in the implementation of the functional integral in many-body
theory, so let us prove it carefully.

First, the operators aj and a†j form an irreducible representation of Fock space.
Then, by Schur’s lemma, we know that if an operator commutes with them then it
must be proportional to 1F . In other words,

[Ô, aj] = 0 = [Ô, a†j] = 0⇒ Ô ∝ 1F . (5.85)

Let us now compute the action of aj on the operator defined on the left-hand side
of (5.84). For notational simplicity we define

d
(
φ̄, φ

)
≡
∏
i

dφ̄i, dφi
π

. (5.86)

Then we have that

aj

∫
d
(
φ̄, φ

)
e−

∑
k φ̄kφk |φ〉〈φ| =

∫
d
(
φ̄, φ

)
e−

∑
k φ̄kφk φj|φ〉〈φ|

(5.87)

= −
∫
d
(
φ̄, φ

) (
∂φ̄je

−
∑

k φ̄kφk
)
|φ〉〈φ| ,

where in the first line in (5.87) we apply the defining property of coherents states
(5.68). Integrating by parts we obtain

aj

∫
d
(
φ̄, φ

)
e−

∑
k φ̄kφk |φ〉〈φ| =

∫
d
(
φ̄, φ

)
e−

∑
k φ̄kφk |φ〉

(
∂φ̄j〈φ|

)
+

∫
∂φ̄j

(
e−

∑
k φ̄kφk |φ〉〈φ|

)
d
(
φ̄, φ

)
. (5.88)



5.3. COHERENT STATES 17

The second term in (5.88) is a total derivative and we can do the integrals. The
integrals we must perform are all of the type

∫
∂φ̄j

(
e−φ̄jφj |φ〉〈φ|

)
dφ̄jdφj = e−(Re[φj ]2+Im[φj ]2)

]+∞

−∞
|φ〉〈φ| = 0 , (5.89)

where we used that

dφ̄j dφj = dIm[φj] dRe[φj] . (5.90)

Then we see that the second term in (5.88) vanishes. Furthermore, using (5.79) the
expression in (5.88) becomes

aj

∫
d
(
φ̄, φ

)
e−

∑
k φ̄kφk |φ〉〈φ| =

∫
d
(
φ̄, φ

)
e−

∑
k φ̄kφk |φ〉〈φ|aj , (5.91)

proving that the operator defined in the left hand-side of (5.84) commutes with aj.

It is straightforward to repeat this for proving that it also commutes with the a†j’s.
Then, it must be proportional to the identity in Fock space 1F . In order to compute
the constant of proportionality c, we use the fact that its vacuum expectation value
must be c, i.e.

∫ ∏
i

dφ̄idφi e
−

∑
k φ̄kφk 〈0|φ〉〈φ|0〉 = c . (5.92)

We need to perform the integrals

∫ +∞

−∞
dφ̄idφie

−φ̄iφi =

∫ +∞

−∞
dRe[φi] dIm[φi] e

−(Re[φi]
2+Im[φi]

2) =
√
π
√
π = π . (5.93)

which tells us that

c =
∏
i

π , (5.94)

which completes our proof of (5.84).

In the next lecture we will make use of this machinery to build the functional integral
for the partition function in a many-body theory.
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Additional suggested readings

• Condensed Matter Field Theory, Altland and Simons, Section 4.1.

• Quantum Theory of Many Particle Systems, A. L. Fetter and J. D. Walecka, Chap-
ters 1 and 2.


