
Lecture 24

Extended Field Configurations

Although our fourmulation of Quantum Field Theory (QFT), whether through canonical
or functional integral quantization methods, has been quite general, up to this point all
our actual calculations have required the use of perturbation theory. This was typically
implemented in expansions in powers of the couplings, or loop expansions. In addition, so
far we have considered expansions around a constant vacuum –both in time and space–
independently of this being a trivial or non trivial (i.e. spontaneously broken) vacuum
state. We will now consider the existence of solutions beyond perturbation theory. These
will be extended field configurations that will depend on the position and which stability
will be the result of boundary conditions or topological conservation laws. These stable
field configurations will require energies above the ground state. To introduce the basic
concepts involved in these types of solutions of QFT, we will start with the simplest
example: a 2D (1 + 1) system.

24.1 Solitons in 2D

We start with a theory of a scalar field in 1 spatial dimension. The lagrangian is

L =
1

2
∂µφ ∂

µφ− V (φ) , (24.1)

where for now we need not specify the potential. The energy of the system can is then
given by

E =

∫
dx

{
1

2
(∂0φ)2 +

1

2
(∂1φ)2 + V (φ)

}
, (24.2)

where we can consider the first term as the kinetic energy of the field φ(x), with the second
and third terms the potential energy. The second term represents the energy stored in
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2 LECTURE 24. EXTENDED FIELD CONFIGURATIONS

the spatial deformation of φ(x). The condition we need to impose for the energy to be
bounded from below is that V (φ) has a minimum. We conventionally choose this to be

Vmin.(φ) = 0 . (24.3)

Thus, the ground state is such that

• φ0 is independent of t and x ,

• φ0 is one of the zeroes of V (φ) ,

where φ0 is the value of the field at the ground state. With these conditions we have that
the energy of the ground state is

E0 = 0 . (24.4)

Having established the conditions for the ground state, we are now going to search for
solutions that are time independent but, to go beyond the ground state, we consider
spatially varying ones. In this case, imposing ∂0φ = 0, the energy is now

E =

∫
dx

{
1

2
(∂1φ)2 + V (φ)

}
. (24.5)

To find these finite energy non trivial field configurations we make use of a trick due to
Bogomol’nyi. We rewrite (24.5) as

E =
1

2

∫ +∞

−∞
dx

(
dφ

dx
∓
√

2V (φ)

)2

±
∫ φ(+∞)

φ(−∞)

√
2V (φ) dφ . (24.6)

One can readily verify that the last two expressions for the energy are equivalent. Inter-
estingly though, the last term in (24.6) only depends on the values of the field φ(x) at
x = ±∞. Thus, if φ(−∞) = φ(+∞) this integral vanishes. In general we can state that

E ≥
∫ φ(+∞)

φ(−∞)

√
2V (φ) dφ . (24.7)

The equality is obtained when the first term in (24.6) vanishes1, i.e. when

dφ

dx
= ±

√
2V (φ) , (24.8)

1This guarantees that the solution will have finite energy.
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is satisfied. Here we can already see that integrating both sides of (24.8) and imposing
that the integral in (24.7) vanishes will result in the ground state. So in order to find a
non trivial solution with ∂1φ(x) 6= 0, we need to have

φ(−∞) 6= φ(+∞) . (24.9)

This is also a good place to notice that the solution resulting from imposing (24.8) corre-
sponds to

Esol. = φ(+∞)− φ(−∞) , (24.10)

is stable against continuous perturbations that maintain the values of the fields at the
boundaries x = ±∞, since Esol. only depends on the latter. As we will see below, this is
at the heart of the topological conservation law associated with these solutions.

The expression in (24.8) can be integrated to obtain

x− x0 = ±
∫ φ(x)

0

df√
2V (f)

, (24.11)

where x0 is an arbitrary integration constant and f just an integration variable. In order
to go further and invert (24.11) to obtain the solution for φ(x) satisfying these conditions,
we need to specify the potential V (φ). We consider the example

V (φ) =
λ

4

(
φ2 − v2

)2
, (24.12)

where λ is a coupling, and v defines the minimum of the potential, defined here to be
zeroes of V (φ) such that

φ0 = ±v . (24.13)

Then, we can perform the integral in (24.11)

x− x0 = ±
∫ φ

0

(x)
df√

λ
2
(f 2 − v2)

= ∓
√

2

λ
arctanh

(
φ

v

)
, (24.14)

which translates into
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Figure 24.1: One of the kink solutions in (24.15), corresponding to the + sign.

φ(x− x0) = ∓ v tanh

(√
λ

2
v(x− x0)

)
. (24.15)

The solution above is sketched in Figure 24.1. This non trivial spatial configuration of
the field is called kink or a soliton. It corresponds to the + sign in (24.15). There will be
another similar kink solution associated with the − sign. In both cases the kink solution
connects the two possible vacua, φ0 = −v and φ0 = +v, from two different points in space.
The point x0, the “center” of the kink, can be anywhere in x as dictated by translation
invariance. The energy stored in this solution is concentrated around x0. This is clear by
considering the energy density

ε(x) =
1

2

(
dφ

dx

)2

+
λ

4

(
φ(x)2 − v2

)2
, (24.16)

which, using (24.8), is just twice the second term. The energy density profile is sketched
in Figure 24.2. We can estimate the typical length scale L over which the energy is
concentrated. Using dimensional analysis we can write

E =

∫ +∞

−∞
dx ε(x) ∼ L

( v
L

)2
+ Lλ v4 , (24.17)

which is minimized for
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0

Figure 24.2: Energy density profile of the kink solutions (24.15).

L ' 1√
λv

=
1

mη

, (24.18)

with mη the mass of the scalar field particle excitation we usually obtain by expanding
around the ground state. That is from writing

φ(x) = v + η(x) , (24.19)

with 〈η(x)〉 = 0. So we see that the length scale associated with the kink solutions is
essentially the Compton wavelength of the particle excitation of the field. From (24.18)
we can see that in the non perturbative limit of large λ the kink solutions tend to behave
as particles with vanishing L.

24.2 Topological Charge

Next, we need to address the question of the stability of these solutions. A useful way to
classify them is by defining the current

Jµ ≡ 1

2v
εµν ∂νφ(x) , (24.20)

where εµν is the two dimensional Levi-Civita tensor with the convention ε01 = 1. This is a
conserved current by construction, i.e.
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∂µJ
µ = 0 . (24.21)

More interestingly, the associated charge is given by

Q =

∫
dx J0 =

1

2v

∫ +∞

−∞
dx

dφ

dx

=
1

2v
[φ(+∞)− φ(−∞)] . (24.22)

We can write this result for the topological charge Q in a general way as

Q = n 2v , (24.23)

with n = 0,+1,−1. The kink solution (24.15) with the + sign would have Q = 2v,
or n = 1. On the other hand, the solution with the − sign (the antikink) would have
Q = −2v or n = −1. Finally, we can consider the ground state solutions φ0 = ±v as
having Q = 0 (or n = 0) since for them φ(+∞) = φ(−∞).

Since the charge Q is conserved, this means that these distinct field configurations, i.e.
with n = 1, n = −1 and n = 0 are stable in the sense that we cannot deform one into
another by finite energy deformations. To see this more clearly, let us consider once more
the kink solution depicted in Figure 24.1. For instance, in order to deform it into the
ground state with φ0 = +v, we need all the points on the negative x axis to be lifted by
a finite amount from the negative values of φ(x) to the value +v. But this needs to be
done for all points from x = 0 to x = −∞, which has an infinite amount of energy cost.
We can say that the n = 1 kink is stable in the sense that it cannot decay to the ground
state or the n = −1 antikink due to this energy cost. This stability is what makes this
type of conservation law different than the ones derived from Noether’s theorem.

Let us introduce some more formal aspects of what we have found. The topological
conservation law divides finite energy solutions en distinct sectors (e.g. with n = 1,
n = −1 and n = 0) according to their topological charges. We can establish a mapping
between the discrete set of points at infinity

S =
{
x = +∞, x = −∞

}
, (24.24)

and the zeroes (actually the minima) of the potential V (φ)

M0 =
{
φ/V (φ) = 0

}
. (24.25)
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The reason is that for the energy of these solutions to remain finite the values of φ(x) at
x = ±∞ must be zeroes of V (φ). Or

lim
x→±∞

φ(x) = φ ∈M0 . (24.26)

We can define mappings from S to M0. If we define φ± ≡ φ(±∞) then the configurations
with n = 1 are described by the mapping

φ+ → +v φ− → −v . (24.27)

That is, the position x = +∞ is mapped to the field value +v in M0, whereas x = −∞ is
mapped to −v. On the other hand, the n = −1 configuration, the antikink, corresponds
to the mapping

φ+ → −v φ− → +v . (24.28)

Finally, the configurations with n = 0, the ground state, correspond to

φ+ → +v φ− → +v ,

or (24.29)

φ+ → −v φ− → −v .

The mappings described in (24.27), (24.28) and (24.29) are topologically distinct since the
correspond to field configurations with different values of n or of the topological charge
Q. As we saw earlier, it is not possible to continuously deform these mappings into one
another.

In the case study here, in 2D, we saw that the mappings are between two discrete sets:
S and M0. This will change when going to higher dimensions.

24.3 Higher Dimensions and Derrick’s Theorem

Here we consider the four dimensional case, (3 + 1), but as we will see later our results
will also be valid for three dimensions or (2 + 1). Starting from the same lagrangian as
in (24.1), we can only see that the topology of the spatial infinity. What was a discrete
set with two possible values in the (1 + 1) case, now is a continuous set described by S2

the sphere at r → ∞2. This is already an important difference. But more urgently, the

2In (2 + 1) the spatial infinity is of course the circle S1, also continuous.
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question is to see if there are any stabe finite energy solutions that are non trivial. We
then retrace the steps we followed for the (1 + 1) case above. First we write the energy as

E =

∫
d3x

{
1

2
(∂0φ)2 +

1

2
(∇φ)2 + V (φ)

}
. (24.30)

Next, we impose that the field configuration in question satisfies that at the surface at
r → ∞ it goes to zeros of V (φ). This gets rid of any possible divergent contribution
coming from the potential. In more formal language we impose that

φ∞(r̂) ≡ lim
R→∞

φ(R r̂) ∈M0 , (24.31)

where, just as in our 2D example, we defined M0 as the set of zeroes (minima) of V (φ).
However, even with (24.31) imposed, and with the assumption of a time independent
configuration that would vanish the first term in (24.30), we still have a problem with the
second term. This is

∇φ · ∇φ =

(
∂φ

∂r

)2

+
1

r2

(
∂φ

∂θ

)2

+
1

r2 sin2 θ

(
∂φ

∂ϕ

)2

, (24.32)

where we are using polar coordinates where ϕ is the azimutal angle. The trouble is that
its contribution to the energy

∫
d3x (∇φ)2 =

∫
r2dr dΩ (∇φ)2 , (24.33)

diverges for any non trivial field configurations. To see this we must assume that at least
one term in (24.32) is non zero. Otherwise, we will have obtained the trivial configuration
corresponding to the ground state E = 0. This is analogous to what we can see in
Figure 24.1. For a field configuration to be non trivial we need the values of φ∞ to have
variation at r →∞. For instance, one of the angular derivatives could be non zero. But
then these terms lead to a linear divergence3. So we conclude that in (3 + 1) dimensions
is not possible to have finite energy non trivial field configurations such as the kinks we
found in (1+1) dimensions. The same can be said of scalar theories in (2+1) dimensions.
This result is known as Derrick’s theorem and it appears to tell us that extended field
configurations can only be found in the lowest possible dimensional systems. As we will
see in the following lectures, there is a way around this result that involves complicating
the theory by introducing gauge fields.

3Incidentally, repeating the whole argument for (2 + 1) dimensions, we will arrive at a logarithmic
divergence. So finite energy non trivial field configurations cannot be obtained in this either.
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24.4 Introducing Stabilizing Gauge Fields

Let us start by considering a gauge theory in (2 + 1) dimensions. The extension to (3 + 1)
dimensions will be straightforward. The lagrangian is

L = −1

4
F a
µνF

aµν + (Dµφ)†Dµφ− V (φ) , (24.34)

invariant under gauge transformations defined in the gauge group G, and with the usual
definition of the covariant derivative. The potential has a set of values that minimize it,
{φ0}, which can be taken to be its zeroes by shifting V (φ) by an irrelevant constant.

To make our calculations simpler it is advantageous to use the temporal gauge:

Aa0 = 0. (24.35)

For instance, this means that we will have

D0φ = ∂0φ , (24.36)

and

F a
0i = ∂0A

a
i . (24.37)

From (24.34) and using

H =
∂L

∂(∂0φ)
∂0φ− L , (24.38)

we obtain

E =

∫
ddx

{1

4
(∂0A

a
i )

2 + ∂0φ
†∂0φ+

1

4
F a
ijF

a
ij + ~Dφ† · ~Dφ+ V (φ)

}
.

(24.39)

We want to find time independent, finite energy solutions that are not the trivial ground
state. We start by dropping the first two terms in (24.39) since there are time derivativs.
We also impose that the solutions must be such that (in (2 + 1) dimensions)

lim
r→∞

φ(r, θ) ≡ φ(∞, θ) , (24.40)
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are zeroes of V (φ). This, of course guarantees that the last term in (24.39) does not
diverge, i.e. that

∫ ∞
0

rdr V (φ) , (24.41)

is not divergent. We now concentrate on the conditions to make the fourth term in
(24.39) finite. Remember that, in the absence of gauge fields, this term was divergent
(logarithmically for (2 + 1) dimensions). The point is that without the gauge fields we
have

∫ ∞
0

r dr
1

r2

(
∂φ

∂θ

)2

, (24.42)

diverges, unless the angular derivative vanishes at r →∞. But this would result in trivial
configuration, the ground state. But the presence of the gauge fields in the covariant
derivative gives us a way to cancel this contribution. In other words, we consider the θ
component of the covariant derivative

êθ · ~D =
1

r

∂φ

∂θ
+ ig Aaθ(x)taφ(x) , (24.43)

with g the gauge coupling, x = (r, θ), and ta the group generators. We then impose that
these two terms cancel in the r →∞ limit, i.e.

lim
r→∞

r Aaθ(x)taφ(x) = − lim
r→∞

i

g

∂φ(x)

∂θ
. (24.44)

The condition above guarantees that the fourth term in (24.39) does not diverge. The
right hand side is a condition on the value of the angular derivative of φ(∞, θ) and it has
not r dependence. Thus, this implies that the θ component of the gauge field at r →∞
satisfies

Aaθ(∞, θ) ∼
1

r
. (24.45)

This translates in turn into a behavior of the purge gauge term in (24.39). Since (24.45)
imposes

Fij ∼
1

r2
, (24.46)



24.4. INTRODUCING STABILIZING GAUGE FIELDS 11

then we will have

FijFij ∼
1

r4
, (24.47)

rendering the contribution of the pure gauge term to the energy harmless since the radial
integral

∫ ∞
0

r dr FijFij (24.48)

is finite. Incidentally, it is clear from the arguments above that the same applies to (3+1)
dimensions, since now we would have the radial integral

∫ ∞
0

r2 dr FijFij , (24.49)

which is still finite. By the same token, we cannot go beyond (3 + 1) dimensions given
that the radial integral will now be divergent (e.g. diverges logarithmically in (4 + 1)
dimensions). In conclusion, the condition (24.44) must be satisfied by
phi(∞, θ). This guarantees that we will have a finite energy stable non trivial solution.
The φ(∞, θ) is a mapping of the circle at r → ∞ into the coset group G/H, since they
must be the zeroes (minima) of V (φ). Mappings that cannot be deformed into each other
are topologically distinct, i.e. they have different topological charges. We illustrate this
with an example. Let us consider the potential

V (φ) =
λ

2

(
φ∗φ− v2

)2
, (24.50)

where φ(x) transforms under the group G = U(1). The zeroes of V (φ), φ0 clearly satisfy

|φ0|2 = v2 , (24.51)

which translates into

φ0 = v eiσ , (24.52)

where σ is a phase. The coset space G/H is the locus of the zeroes, i.e. a circle of radius
v. We see that there is a mapping from the physical space at r → infty into the coset
space G/H which is defined by
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r
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v

0

0

Mapping

Figure 24.3: Mapping from the 2D space (x, y) to the coset space G/H. This corresponds
to S1 → S1, a mapping from the circle into the circle.

lim
r→∞

φ(r, θ) = φ(∞, θ) = φ0 e
iσ , (24.53)

where the second equality is the condition that the φ(∞, θ) must be zeroes of V (φ). The
condition (24.53) above corresponds to a mapping illustrated in Figure 24.3. Each point
in (x, y) can be mapped to a point in the coset space G/H. However, this correspondence
is fixed up to the windings around G/H. For each mapping we define a winding number n
that tells us how many times we need to go around the circle in G/H to find the point in it
corresponding to the one originating in (x, y). Thus, the winding number n characterizes
the mapping. To be more concrete, let us write

∫ 2π

0

dθ = 2π , (24.54)

defining the span of the variable θ in space, whereas for the phase in G/H we have that
σ → σ + 2π n results in the same point in the coset circle. Then, for each circle in (x, y)
(i.e. for each 2π in the variable θ we have

2π n =

∫ 2π

0

dσ =

∫ 2π

0

dθ
dσ

dθ
, (24.55)

which results in
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n =
1

2π

∫ 2π

0

dθ
dσ

dθ
. (24.56)

The expression above for the winding number will be of great importance in our under-
standing of the topological properties of these mappings.

As an application, let us consider the case when the gauge group is abelian. In particular,
here we will consider G = U(1)EM, i.e. electromagnetism. We rewrite the condition
(24.44) as

lim
r→∞

r Aθ φ(∞, θ) = − i
e

dφ(∞, θ)
dθ

. (24.57)

The magnetic flux crossing a surface S is given by

Φ =

∫
S

~B · d~S =

∮
C(S)

~A · d~̀ , (24.58)

For our two dimensional sistem this is

Φ =

∫ 2π

0

r dθ Aθ(r, θ) . (24.59)

But using (24.57), we have that

lim
r→∞

r Aθ(r, θ) v e
iσ = − i

e
v eiσ i

dσ

dθ
. (24.60)

Using (24.60) in (24.59) we arrive at

Φ = lim
r→∞

∫ 2π

0

1

e
dθ
dσ

dθ
=

2π n

e
. (24.61)

Thus, we obtain the quantization of the magnetic flux as a result of the topological
properties of the mapping from space to coset space. This corresponds to the description
of type II superconductors, where the quantized magnetic flux is confined in the cross
section of vortices. These simple examples contain several of the more formal elements
that we will use in more complex situations, i.e. to describe monopole solutions in (3 + 1)
dimensions or instantons in euclidean 4D. We will introduce some of these formal elements
of topology in the next lecture before me move on to these cases.
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Additional suggested readings

• Advanced Topics in Quantum Field Theory: A Lecture Course, by M. Shifman,
Chapter 2.

• The Quantum Theory of Fields, Vol. II, by S. Weinberg, Section 23.1.
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