
Lecture 22

Anomalies in the Functional Integral

In the previous lecture, we see that it ispossible to have symmetries that are classically
preserved to be explicitely broken by quantum corrections. In particular, we saw that
the axial current –classically conserved in the limit of massless fermions– is anomalous
in the full quantum theory. In this lecture, we will approach the problem by looking at
the response of the functional integral under symmetry transformations. Since we will be
looking at the quantum properties of currents, we will first reexamine how symmetries
and their associated currents appear in the functional integral formalism. Then, we will
be ready to state the problem of anomalies as one of the (non-)invariance of the measure
in the functional integral.

22.1 Symmetries in the Functional Integral

We can write the generating function of a theory in terms of sources as

Z[j, fµ] =

∫
Dφ ei

∫
d4x
{
L(φ(x))+j(x)φ(x)+fµ(x)Jµ(x)

}
, (22.1)

where there is a scalar source j(x) linearly coupled to the field φ(x), and we also defined
a vector source fµ(x) coupled to the current Jµ(x). In this way, we can define

J̄µ(x) ≡ (−i)δ lnZ

δfµ

∣∣∣
fµ=0

= 〈0|Jµ(x)|0〉 , (22.2)

the vacuum expectation value of the current. More generally, we can define the expecta-
tion value of a product of currents. For instance, if we consider a theory with fermions
and a vector boson, we can define
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Z[vµ, aµ] =

∫
DψDψ̄DAµ ei

∫
d4x
{
L(ψ,ψ̄,Aµ)+vµ(x)JµV (x)+aµ(x)JµA(x)

}
, (22.3)

where we introduced the vector and axial currents JµV and JµA, respectively. From it we
can obtain

〈0|TJµA(x) JνV (y) JαV (z)|0〉 = (−i)2 δ2

δvν(y) δvα(z)
J̄µA(x) , (22.4)

where T corresponds to time ordering. This three point amplitude is analogous to the
triangle diagram we computed in the previous lecture. If we were to obtain a current
conservation equation as in

∂µJ̄
µ
i (x) = 0, (22.5)

with i = V,A this would be a current conservation law valid in the presence of quantum
effects.

We want to know what are the conditions for (22.5) to be satisfied. For this purpose,
we will implement Noether’s theorem in the functional integral. We start by considering
an infinitesimal transformation of a field φ(x) as given by

φ(x) −→ φ(x) + ε(x)F (φ) , (22.6)

where F (φ) is a function of the field that contains the information about the symmetry
transformation (e.g. generators). Although we are considering ε(x) as an infinitesimal
function of x, our results will equally apply for both local and global symmetry transfor-
mations. The change in the lagrangian L is given by

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µ(δφ)

(22.7)

=
∂L
∂φ

ε F (φ)− ∂µ
( ∂L
∂(∂µφ)

)
εF (φ) + ∂µ

( ∂L
∂(∂µφ)

εF (φ)
)
,

where in the first line we use that δ(∂µφ) = ∂µ(δφ), and in the second line we substituted
δφ = εF (φ). The first two terms in the second line of (22.7) vanish by virtue of the
equation of motion. Thus, we have
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L(φ′) = L(φ) + ∂µ

( ∂L
∂(∂µφ)

εF (φ)
)
. (22.8)

We can rewrite this expression using the fact that ε is position dependent. Then we have

L(φ′) = L(φ) + ∂µε(x)F (φ)
∂L

∂(∂µφ)
+ total derivatives , (22.9)

where we have added the possibility of an additional total derivative, which then does not
change the invariance of the action. Then, we can write the current as

Jµ(x) = F (φ)
∂L

∂(∂µφ)
, (22.10)

which results in

L(φ′) = L(φ) + ∂µε(x) Jµ(x) , (22.11)

and from which we could define the current also as

Jµ(x) =
∂L(φ′)

∂(∂µε)
. (22.12)

We recover the classical statement of the invariance of the lagrangian by integrating by
parts the second term in (22.11) to conclude that

L(φ′) = L(φ) if ∂µJ
µ = 0. (22.13)

We want now to do something similar to understand the relationship between the con-
servation of the current defined in the functional integral by (22.2) and the invariance
of the theory as fully defined by the generating functional. So starting from (22.1) for
the generating functional, we consider its variation in response to the deformation of the
source fµ(x). This is given by

δ lnZ(fµ] = lnZ[fµ + δfµ]− lnZ[fµ]

(22.14)

= i

∫
d4x J̄µ(x) δfµ(x) ,
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where we can view the second equality as the inverse of (22.2). If we now choose the
vector source so that

δfµ = ∂µε(x) , (22.15)

then we have that

δε lnZ[fµ] = lnZ[fµ + ∂µε]− lnZ[fµ]

= i

∫
d4x J̄µ(x)∂µε(x)

= −i
∫
d4x ∂µJ̄

µ(x) ε(x) . (22.16)

where to obtain the last line we integrated by parts in the second. Then, we see that
the invariance of the generating functional appears to hinge on the conservation of the
current defined by (22.2). That is,

Z[fµ + ∂µε] = Z[fµ] ↔ ∂µJ̄
µ(x) = 0 . (22.17)

Let us now check what are the conditions for (22.17) to be satisfied. The generating
functional with the changed source can be written as

Z[fµ + ∂µε] =

∫
Dφ e

i
∫
d4x

{
L(φ)+

(
fµ+∂µε

)
Jµ(x)

}
. (22.18)

But making use of (22.11), we can write this as

Z[fµ + ∂µε] =

∫
Dφ e

i
∫
d4x

{
L(φ′)+fµ(x)Jµ(x)

}
. (22.19)

But the expression above is almost identical to Z[fµ]. The only extra assumption needed
is that

Dφ = Dφ′ , (22.20)

is satisfied. That is, if the Jacobian for the functional integration measure of the field
under the symmetry transformation is unity, then we have that
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Z[fµ + ∂µε] = Z[fµ] , (22.21)

which then implies that the expectation value of the current satisfies

∂µJ̄
µ(x) = 0 . (22.22)

Thus, we have identified the condition that must be satisfied for the absence of anomalies
in a given theory. Quantum anomalies will not be present if the integration measure
of the fields in the functional integral is invariant under the symmetry transformations.
Conversely, quantum anomalies will be present if the Jacobian of the transformation
of the measure is not unity. Below we will consider the same example we studied via
loop diagrams in the previous lecture: axial transformations and the anomalies in axial
currents.

22.2 Chiral Anomaly in the Functional Integral

We consider a theory of massless fermions with a generating functional given by

Z =

∫
DψDψ̄ ei

∫
d4x ψ̄i 6Dψ , (22.23)

where the covariant derivative is that of a vector gauge theory (e.g. QED, QCD). We
focus on infinitesimal chiral transformations defined by

ψ(x)→ ψ′(x) = eiα(x)γ5 ψ(x) '
(
1 + α(x)γ5

)
ψ(x)

(22.24)

ψ̄(x)→ ψ̄′(x) = ψ̄(x) eiα(x)γ5 ' ψ̄(x)
(
1 + α(x)γ5

)
,

with α(x) an infinitesimal function. Then, the variation in the action is readily obtained
as

∫
d4x ψ̄′ i 6Dψ′ =

∫
d4x

{
ψ̄i 6Dψ − ∂µα(x) ψ̄γµγ5ψ

}
=

∫
d4x

{
ψ̄i 6Dψ + α(x) ∂µ

(
ψ̄γµγ5ψ

)}
, (22.25)

which clearly shows the classical conservation of the current in the event of the invariance
of the lagrangian. That is,
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δL
∂α

= 0 ⇒ ∂µJ
µ
A(x) = 0 , (22.26)

with the usual definition of the axial current: JµA(x) = ψ̄(x)γµγ5ψ(x). But this was the
easy part.

Now we need to compute the Jacobian of the chiral transformations defined in (22.24).
We start by expanding the fermionic fields in a basis of eigenstates of the operator i 6D .
As we will see below, this will allow us to perform the functional integration. We write
the fermionic fields as

ψ(x) =
∑
m

amφm(x) , (22.27)

where the coefficients am are Grassmann variables, and the scalar eigenfunctions satisfy

i 6Dφm(x) = λm φm(x) , (22.28)

with the λm the eigenvalues. Analogously, we can write1

ψ̄(x) =
∑
m

âmφ̂m(x) , (22.29)

and the eigenfunctions satisfying

φ̂m(x)i 6D = λm φ̂m(x) . (22.30)

The functional integration will then be carried out by integrating the Grassmann coeffi-
cients am and âm, i.e.

DψDψ̄ =
∏
m

dam dâm . (22.31)

We first consider the chiral transformation for ψ(x) as shown in the first line of (22.24).
In terms of ψ′(x) expansion defined by

ψ′(x) =
∑
m

a′m φm(x) , (22.32)

1This may appear confusing. The φ̂m(x) are the same as the φm(x). They belong to the basis
of eigenfunctions of i 6D. The hat notation is to differentiate the variables and eigenfunctions of the
expansions of ψ(x) and ψ̄(x). This is reflected on the fact that the eigenvalues λm are the same for both.
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we have

∑
m

a′mφm(x) =
(
1 + iα(x)γ5

) ∑
n

anφn(x) . (22.33)

But using the orthonormality condition of the eigenfunctions

∫
d4xφ†m(x)φn(x) = δmn , (22.34)

we can isolate an expression for a′m(x) given by

a′m(x) =
∑
n

∫
d4xφ†m(x)

(
1 + iα(x)γ5

)
φn(x)an , (22.35)

which we can write in compact form as

a′m =
∑
n

(
δmn + Cmn

)
an , (22.36)

where we defined

Cmn ≡
∫
d4xφ†m(x), iα(x)γ5 ψn(x) . (22.37)

Thus the Jacobian for the transformation from ψ(x) to ψ′(x) (or from am → a′m) is

∆ ≡ det
(
1+ C

)
. (22.38)

Similarly, the same Jacobian will emerge when making the chiral transformation on
ψ̄(x) → ψ̄′(x). The way ∆ appears in the transformation of the functional integral
measure DψDψ̄ is a bit counterintuitive. In order to clarify this we consider the simple
case of integration over two Grassmann variables, θ1 and θ2. The most general function
we can write is

f(θ1, θ2) = f0 + f1 θ1 + f2 θ2 + f12 θ1 θ2 , (22.39)

where the f ’s are arbitrary coefficients. If now we consider a linear transformation of the
Grassmann variables
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θ′1 = D11 θ1 +D12 θ2

(22.40)

θ′2 = D21 θ1 +D22 θ2

or in matrix form

(
θ′1
θ′2

)
= D

(
θ1

θ2

)
, (22.41)

We now define the change in the measure of the Grassmann integrals by

∫
dθ′1 dθ

′
2 f(θ′) ≡

∫
K dθ1 dθ2 f(D θ) . (22.42)

But using the properties of Grassmann integration

∫
dθi = 0,

∫
dθi θi = 1, (22.43)

we see that the only contributing term is the f12 one. Se we can rewrite (22.42) as

∫
dθ′1 dθ

′
2 f12 θ

′
1 θ
′
2 = K

∫
dθ1 dθ2 f12

(
D11 θ1 +D12 θ2

)(
D21 θ1 +D22 θ2

)
. (22.44)

Then we have

f12

∫
dθ′1 dθ

′
2 θ
′
1 θ
′
2 = K f12

(
D11D22 −D12D21

) ∫
dθ1 dθ2 θ1 θ2 , (22.45)

where the minus sign appearing in the right hand side is the result of the anticommutation
rule {θ1, θ2} = 0. Then, we obtain that

1 = K
(
D11D22 −D12D21

)
, (22.46)

or

K =
(

detD
)−1

, (22.47)
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Going back to our funcional integration, we can generalize (22.47) for integration over
θ1, . . . θm, . . ., corresponding to the tranformations am → a′m associated with the chiral
transformations ψ → ψ′. Similarly for the âm → â′m transformations associated with
ψ̄ → ψ̄′. Using the result in (22.47) we see that the change in the masure of the functional
integral will be

Dψ′Dψ̄′ = ∆−1Dψ∆−1Dψ̄ = ∆−2DψDψ̄ , (22.48)

where ∆ was defined in (22.38).

All is left now is to compute ∆. We start by noticing that

∆ = det
(
1 + C

)
= eTr ln(1+C) , (22.49)

where the trace refers to all indices, both the ones in the eigenbasis expansion as well
as Dirac indices. Given that C is infinitesimal (is proportional to α(x), the infinitesimal
gauge paramenter), we can use

ln
(
1 + C

)
' C+ . . . , (22.50)

where the dots indicate higher orders in powers of α(x). We then arriva at

∆ = eTr
∑

n Cnn+... , (22.51)

or

ln ∆ = iTr

∫
d4xα(x)

∑
n

φ†n(x) γ5 φn(x) , (22.52)

where now the trace is only over Dirac indices since we already took it over the eigenbasis
indices. At first sight it looks like (22.52) vanishes. This is because Trγ5 = 0. If this were
true then we would have ∆ = 1, and there would be no nontrivial transformation of the
measure in the functional integral, and therefore no axial anomaly. However, this is not
case since the sum over the eigenfunctions in (22.52) diverges. In fact, we can see that
the product of the two eigen functions evaluated at the same spacetime point x can be
thought of as a two point function. So we know that as spacetime separation goes to zero
or momentum goes to infinity there will be divergences. For instance we can write the
sum in (22.52) as

lim
x→y

∑
n

φ†(x) γ5 φn(y) or
∑
n

φ†(x) γ5 φn(y) δ(x− y) . (22.53)
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Either way we can see that this sum is not well defined and needs to be regularized.

To regularize the sum over the products of the eigenfunctions in (22.52), we are going to
introduce a regularization function defined by

∑
n

φ†n(x) γ5 φn(x) = lim
M→∞

∑
n

φ†n(x) γ5R
[(
i 6D/M

)2
]
φn(x) , (22.54)

where R[s] must satisfy

R[0] = 1, R[∞] = 0 . (22.55)

We have chosen the argument of R in (22.54) to be a power of i 6D since the ψn(x) are its
eigenfunctions. For instance, we can choose

R[s] = e−s , (22.56)

which when applied to the eigenfunctions φn(x) will give

e(i6D)2/M2

φn(x) = e−6D
2/M2

φn(x) = eλ
2
n/M

2

φn(x) . (22.57)

The last factor above is of the required form given that at high momentum we have
i 6D ' i 6∂ ∼ k so that

λ2
n ' k2 = −k2

E < 0 , (22.58)

so that R has the form (22.56) when performing the integration on the euclidean momen-
tum kE. Going back to (22.54), we write its trace over the Dirac indices as

Tr
∑

n

φ†n(x) γ5 φn(x) = lim
M→∞

Tr
∑

n

φ†n(x) γ5 e(i6D)2/M2

φn(x)

= lim
M→∞

〈x|Tr
[
γ5 e(i6D)2/M2

]
|x〉 , (22.59)

where in the second line we replaced the summ over the eigenfunctions evaluated at x by
the corresponding eigenstates of i 6D at the same position, |x〉 for notational simplicity. We
next notice that the covariant derivative operator in the exponent above can be written
as
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(
i 6D
)2

= −γµγν DµDν

= −
{1

2

{
γµ, γν

}
+

1

2

[
γµ, γν

]}
DµDν

= −D2 − (−i) i
2

[
γµ, γν

] 1

2

[
Dµ, Dν

]
= −D2 +

g

2
σµν Fµν , (22.60)

where in the las line we used

σµν =
i

2
[γµ, γν ] , (22.61)

and that the commutator of the covariant derivatives can be written as

[Dµ, Dν ] = −i g Fµν . (22.62)

We can then rewrite (22.59) as

Tr
∑

n

φ†n(x) γ5 φn(x) = lim
M→∞

〈x|Tr
[
γ5 e(−D2+(g/2)σµνFµν)/M2

]
|x〉 . (22.63)

The presence of γ5 in (22.63) above clearly requires that for the trace to be non vanishing
we need at least four gamma matrices in the expansion of the exponential. The first term
in the expansion of the exponential will only give two gamma matrices with one γ5 so
the trace vanishes. The second term already has four gamma matrices so it will give a
non zero contribution as we will show below. Also shown below is the fact that all the
higher order terms in the exponential expansion beyond second order will vanish in the
limit M →∞. The relevant contribution is then

Tr
∑

n

φ†n(x) γ5 φn(x) = lim
M→∞

〈x|Tr
[
γ5

1

2!

(
g

2

σµνFµν
M2

)2]
e−D2/M2|x〉

(22.64)

= lim
M→∞

Tr
[
γ5

1

2!

g2

4

1

M4
(σµνFµν)

2
]
〈x|e−∂2/M2|x〉 .

In the first line of (22.64) we expanded only the term in the exponential containing σµν

(the only one relevant for the trace) and left the squared of the covariant derivative in
the exponential. In the second line we replaced the squared of the covariant derivative by



12 LECTURE 22. ANOMALIES IN THE FUNCTIONAL INTEGRAL

the simple squared derivative (Dalembertian). This is justified since, as we will se below,
the dominant contributions come from high momenta, of order M , for which i 6D ' i 6 ∂
is a good approximation. In order to proceed we need to compute the last factor in the
second line of (22.64). for this, we write

〈x|e−∂2/M2 |x〉 = lim
x→y

∫
d4k

(2π)4
e−ik·(x−y) ek

2/M2

= i

∫
d4kE
(2π)4

e−k
2
E/M

2

=
i

16π4

∫
k3
EdkEdΩkE e

−k2E/M
2

=
i

16π2

∫ ∞
0

k2
E dk

2
E e
−k2E/M

2

=
i

16π2
M4 . (22.65)

Here we see that terms beyond the quadratic term in the expansion of e(g2/2)σµνFµν/M2

are going to be suppressed by powers of M6 or larger, so they will not contribute in the
M →∞ limit. Thus, the second order term in (22.64) is the only non zero contribution.
We then obtain

Tr
∑

n

φ†n(x) γ5 φn(x) = lim
M→∞

i

16π2
M4 g

2

8

1

M4
Tr
[
γ5σ

µνσαβ
]

Fµν Fαβ

= − i

16π2

g2

8
Tr
[
γ5γ

µγνγαγβ
]

Fµν Fαβ

= − g2

32π2
εµναβ Fµν Fαβ , (22.66)

where in the last line we used

Tr
[
γ5γ

µγνγαγβ
]

= −4i εµναβ .

Finally, substituting the result of (22.66) in (22.52) we obtain

∆ = e−i
∫
d4xα(x) g2

32π2
εµναβ FµνFαβ . (22.67)

This means that under the chiral transformations of (22.24), the generating functional
(22.23) turns into
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Z =

∫
DψDψ̄∆−2 ei

∫
d4x
{
ψ̄i6Dψ+α(x) ∂µJ

µ
A

}
=

∫
DψDψ̄ ei

∫
d4x
{
ψ̄i6Dψ+α(x)

[
∂µJ

µ
A+ g2

16π2
εµναβFµνFαβ

]}
, (22.68)

where in the second line we used (22.67) for ∆. It is now clear that imposing that the
lagrangian be invariant with respect to the paramenter α results in the non conservation
of the axial current. That is

δL
δα

= 0 , (22.69)

implies that

∂µJ
µ
A = − g2

16π2
εµναβ Fµν Fαβ , (22.70)

just as we computed diagrammatically in the previous lecture. Just as in the previous
lecture, we saw that the effect of the anomaly comes from the UV behavior of the theory
in the presence of the axial coupling, i.e. in the presence of the γ5 in a vertex. But what
we have seen here, is that the entire effect comes from the non invariance of the functional
integral measure under the chiral transformations of the fermion fields. In coming lectures
we will recast the meaning of the anomaly in light of some fundamental properties of the
quantum fields theories that posses them.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Sections
19.1 and 19.2.

• The Quantum Theory of Fields, Vol. II, by S. Weinberg, Section 22.3.

• Dynamics of the Standard Model, J. F. Donoghue, E. Golowich and B. Holstein,
Section III-3.


