
Lecture 18

Renormalization of Non-Abelian
Gauge Theories

We start with a generic Yang-Mills theory with fermions. Its lagrangian is given by

L = −1

4
F a
µνF

aµν + ψ̄(i 6D −m)ψ , (18.1)

where we have defined the non-abelian gauge field strength F a
µν by

F a
µν = ∂µA

a
ν − ∂νAaµ + g fabcAbµA

c
ν , (18.2)

with Aaµ the gauge field, fabc the structure constant of the corresponding and g the gauge
coupling.

We quickly recall the Feynman rules the Feynman rules from lecture 16. These are shown
below. The first one corresponds to the interactions of the fermions with the non-abelian
gauge bosons. It is very similar to the interaction of charged fermions with photons in
QED, with the sole addition of the generator ta.

= i gγµ ta

In addition, non-abelian gauge theories have Feynman rules governing the interactions
among the gauge bosons themselves. From (18.1) we see there are terms involving three
gauge bosons, depicted below:
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k

p q

= g fabc [gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ]

These terms come from one of the derivatives, for instance in F a
µν , hitting the last term

in (18.2). That is why the momenta in the diagram enter. This is also a Feynman rule
coming in at order g.

Finally, there is a Feynman rule associated with the interaction of four gauge bosons,
coming from the product of the last term in F a

µν with the similar term in F aµν . This is
given by

= −ig2
[
fabef cde (gµρgνσ − gµσgνρ)

+ facef bde (gµνgρσ − gµσgνρ)
+ fadef bce (gµνgρσ − gµρgνσ)

]

In addition to these, we now need to consider the Feynman rules for ghost fields. As we
saw in lecture 17, these are

a b
q

=
i

q2 + iε
δab

for the ghost propagator, and
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a c

p

= g fabc pµ

for the ghost–gauge boson vertex. Now, in order to renormaliza the theory, we need to
define the necessary counterterms. Just as we did when computing the β function of
QED or φ4 scalar theory, we are going to assume that the renormalization scale µ is high
compared with the masses of the fermions involved,

µ� m , (18.3)

where here m stands for all the fermion masses. Then, the relevant coiunterterms are
the ones associated to the renormalization of the fermion lines (δ2), the gauge boson line
(δ3) and the fermion–gauge boson vertex (δ1). They introduce the counterterm Feynman
diagrams below:

p

= i 6p δ2

q

= −i
(
q2gµν − qµqν

)
δab δ3

= i g γµ ta δ1
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Figure 18.1: One loop contributions to the gauge boson two point function in non abelian
gauge theories. Diagram (a) is the fermion loop, similar to the ones present in abelian
theories. The last three diagrams are present only in non abelian gauge theories. In
particular, diagram (d) is a ghost loop.

where, as mentioned earlier, the fermion mass is neglected in the fermion counterterm.
Armed with these, we can compute the β function of non abelian gauge theories using
the Callan-Symanzik equation:

β(g) = µ
∂

∂µ

(
1

2
g
∑
i

δZi − δg

)
, (18.4)

which in our case translates to

β(g) = g µ
∂

∂µ

(
1

2
δ3 + δ2 − δ1

)
, (18.5)

where the extra factor of δ2 comes from the fact that there are two fermion lines in the
interaction, and we used δg = g δ1. In what follows, we will compute the one loop β
function in non abelian gauge theories, by computing the corresponding counterterms.

18.1 Gauge Boson Self-energy: δ3

To compute the counterterm δ3 to one loop accuracy, we will consider the contributions
to the gauge boson two point function shown in Figure 18.1.
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The sum of these contributions plus the counterterm at some renormalization scale µ2

will fix δ3.

Diagram (a): The first diagram in Figure 18.1 is analogous to the one in QED. In fact
we can borrow the result from the electron loop, with the only difference being the group
generators entering in the vertices. Using the result in dimensional regularization the
contribution from diagram (a) is

I(a) = i(q2gµν − qµqν) Tr[tatb]
−8g2

(4π)d/2
Γ[ε/2]

∫ 1

0

dx
x(1− x)

∆ε/2
, (18.6)

where we defined

∆ ≡ m2 − x(1− x) q2 . (18.7)

For fermions in a generic representation r the trace is1

Tr[tatb] = C(r) . (18.8)

but in order to use (18.6) to compute the β function, we are only interested in its depen-
dence on the renormalization scale µ. In order to see how this comes about in I(a), we
will set the renormalization condition at

q2 = −µ2 , (18.9)

so that we can write

∆ = m2 + x(1− x)µ2 ≡ µ2
(
κ+ x(1− x)

)
, (18.10)

where in the second equality we defined the arbitrary dimensionless constant κ by the
relation m2 = κµ2. Since

Γ[ε/2]

∆ε/2
=

{
2

ε
− lnµ2 − ln [κx(1− x)] + · · ·

}
, (18.11)

where the dots indicate terms that vanish in the ε → 0 limit. Then, it is clear that for
the purpose of computing the β function we only need the coefficient of the term − lnµ2.
If we generally allow for there to be an nf number of fermion flavors, then the fermion
loop contribution relevant to the β function can be expressed as

1For instance, in the fundamental representation of SU(N) we have C(N) = 1/2.
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I(a) = i(q2gµν − qµqν) −g
2

(4π)d/2
4

3
C(r)

Γ[ε/2]

µε/2
. (18.12)

Diagram (b): This next diagram is generated by the triple gauge boson couplings coming
from L3G in the previous lecture. Using the Feynman rules derived from it for the triple
gauge boson interaction we can write this contribution as

I(b) =
1

2
g2 facd f bcd

∫
d4p

(2π)4
−i
p2

−i
(p+ q)2

Nµν , (18.13)

where we have defined the tensor

Nµν =
(
gµρ(q − p)σ + gρσ(2p+ q)µ + gσµ(−p− 2q)ρ

)
×

(
δνρ(p− q)σ + gρσ(−2p− q)ν + δνσ(2q + p)ρ

)
. (18.14)

The next steps are standard: Feynman parametrization, shift in the integration variable

pµ → `µ = p+ x qµ , (18.15)

where x is the Feynman parameter introduced, and defining

∆ ≡ −x(1− x)q2 , (18.16)

we obtain

I(b) =
i g2

(4π)d
C2(G) δab

∫ 1

0

dx
1

∆ε/2

{
Γ[−1 + ε/2] gµν q2

[
3

2
(d− 1)x(1− x)

]
+ Γ[ε/2] gµν q2

[
1

2
(2− x)2 +

1

2
(1 + x)

]
− Γ[ε/2] qµqν

[
(1− d

2
)(1− 2x)2 + (1 + x)(2− x)

]}
, (18.17)

where we used that

facd f bcd = (tcG)ad (tcG)db = C2(G) δab , (18.18)
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with C2(G) the Casimir of the adjoint representation. It is clear from (18.17) that, unlike
I(a), this contribution is not transverse by itself.

Diagram (c): This diagram is generated by the quartic gauge boson interaction from L4G

defined in the previous lecture. Using the quartic gauge boson Feynman rule, we have

I(c) =
−i g2

2

∫
d4p

(2π)4
−i gρσ
p2

δcd
{
fabef cde (gµρgνσ − gµσgνρ)

+ facef bde (gµνgρσ − gµσgνρ)

+ fadef bce (gµνgρσ − gµρgνσ)
}
, (18.19)

But since the structure constants are antisymmetric, the first term in (18.19) does not
contribute, i.e.

δcd f cde = 0 . (18.20)

The remaining two terms will also be proportional to the quadratic Casimir of the adjoint
representation, C2(G), after using (18.18). Collecting all terms we arrive at

I(c) = −g2C2(G) δab
∫

d4p

(2π)4
gµν

p2
(d− 1) . (18.21)

In order to proceed further with the usual steps, it is advantageous to artificially introduce
a dependence on the external momentum qµ by writing

1 =
(q + p)2

(q + p)2
, (18.22)

which allows us to introduce a Feynman parametrization through the momentum shift

`µ ≡ pµ + x qµ , (18.23)

where x is the Feynman parameter. The rest of the calculation is as always: Wick rotation,
dimensional regularization, etc. The result is

I(c) =
ig2

(4π)d/2
C2(G) δab

∫ 1

0

dx

∆ε/2

{
− Γ[−1 + ε/2] gµν q2

1

2
d (d− 1)x (1− x)

− Γ[ε/2] gµν q2 (d− 1) (1− x)2
}
. (18.24)
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Once again, we see that this contribution is not transverse by itself, nor is its summ to
diagram (b).

Diagram (d): Finally, we need to compute the ghost loop contribution to the gauge boson
propagator. Using the ghost–gauge boson Feynman rule derived in the previous lecture
and showed earlier in this one, we must be careful with the momentum flow and the group
indices in the structure constants. This gives

I(d) = (−1) g2 fdac f cbd
∫

d4p

(2π)4
(q + p)µ pν

i

(q + p)2
i

p2
. (18.25)

Notice that we considered the group index of the top ghost propagator to be d (assuming
that the “conservation” of this index was already imposed by the delta function that
appears in the ghost propagator), and to be c for the bottom propagator. The Feynman
rule tells us that the gauge boson index at each vertex goes in the middle of the structure
constant, whereas the first index corresponds to the one that carries the momentum
factor. Finally, notice the factor of (−1) in front of the whole diagram: it is a loop of
anticommuting fields, so there is an overall sign in front of it, which it will turn out to be
crucial in the end. Following the same steps as for diagrams (b) and (c) we obtain

I(d) =
ig2

(4π)d/2
C2(G) δab

∫ 1

0

dx

∆ε/2

{
− Γ[−1 + ε/2] gµν q2

1

2
x (1− x)

+ Γ[ε/2] qµ qν x (1− x)
}
. (18.26)

Clearly, this is not transverse by itself either. But the hope is that the summ of the three
contributions from diagrams (b), (c) and (d) (diagram (a), a QED-like contribution, is
already transverse) will result in an overall transverse gauge boson two point function.
We will do this in a moment, but for now let us concentrate on the parts of the diagrams
that are proportional to Γ[−1 + ε/2]. When we introduce dimensional regularization,
we pointed out that these factors are typically appearing in diagrams that would have
quadratic divergences if computed in a cutoff scheme such as Pauli-Villars. If we add all
these contributions the answer will be proportional to

Γ[−1 + ε/2] gµν q2 x(1− x) (−1 +
ε

2
(2− d) , (18.27)

where we used that ε = 4− d. But using

Γ[−1 + ε/2] (−1 +
ε

2
) = Γ[ε/2] , (18.28)

the result is now proportional to
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Γ[ε/2] (2− d) gµν q2 x (1− x) . (18.29)

Then, it looks like having the ghost field loop, with its factor of (−1) in front coming
from the fact that they are anticommuting fields, is what turned this seemingly quadratic
divergence in the gauge boson two point function to a tamer divergence, associated with
logarithmic cutoff dependence. A quadratic divergence would have signaled the appear-
ance of a (divergent) gauge boson mass, with the consequent loss of gauge invariance.
We will see this below in the restoration of transversality. Adding all three diagrams we
obtain

I(b) + I(c) + I(d) = i
(
gµν q2 − qµqν

) (−g2)
(4π)d/2

C2(G)δab

×
∫ 1

0

dx
Γ[ε/2]

∆ε/2

{
2 + (1− d/2) (1− 2x)2

}
, (18.30)

which is manifestly transverse. Thus, we arrive at the conclusion that the ghost loop
contribution to the gauge boson two point function was crucial for the preservation of
gauge invariance, including the anticommuting character of ghost fields.

We can now finally compute the counterterm δ3 by adding all four diagrams in Figure 18.1
plus the corresponding counterterm diagram contributing to the gauge boson two point
function, and impose the renormalization condition that the summ of all these contribu-
tions vanish at the renormalization scale

q2 = −µ . (18.31)

This results in

δ3 =
g2

16π2

{5
3
C2(G)− 4

3
nf C(r)

} Γ[ε/2]

(µ2)ε/2
. (18.32)

The first term in the expression above comes from the addition of diagrams (b), (c) and (d),
whereas the second term is the contribution from the nf fermion loops in (18.12). Even
before we complete the computation of all counterterms and obtain the beta function, we
can already draw some interesting conclusions from (18.32). From the Callan-Symanzik
equation (18.5) we can see that the contribution from δ3 to the β function of a non abelian
gauge theory has two contributions of opposite sign. This contribution is

1

2
g
∂δ3
∂ lnµ

=
g3

16π2

{
−5

3
C2(G) +

4

3
nf C(r)

}
. (18.33)
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Figure 18.2: One loop contribution to the fermion self energy. The group indices at the
vertices indicate factors of the generators, ta and tb. The factor of δab appears in the non
abelian gauge boson propagator.

We see that the term coming from the QED-like fermion loops fives a positive contribution
to β(g), just as in QED. On the other hand, the first term, coming entirely from the non
abelian character of the gauge theory give a negative contribution. Thus, depending on
the number of fermion flavors nf , the contribution to β(g) could be postive or negative.
Of course, this sign is of great consequence for the infrared and ultraviolet behavior of the
theory. But before we conclude on the sign of the β function, we still need to compute
the other two counterterms entering in (18.5).

18.2 Fermion Self Energy: δ2

There is only one diagram contributing to one loop order to the self energy of the fermion in
a non abelian gauge theory. This is shown in Figure 18.2. Once this diagram is computed
(exercise) , it needs to be added to the counterterm controbution to the fermion two point
function containing ]delta2. Imposing the appropriate renormalization condition at the
scale p2 = −µ2 which in the absence of a fermion mass counterterm simple means that
the summ of the two contributions must vanish at this scale. Then, we obtain

δ2 = − g2

(4π)d/2
C2(r)

Γ[ε/2]

(µ2)ε/2
. (18.34)

In (18.34) we see the appearance of the quadratic Casimir for the fermion representation
r (as opposed to C2(G), for the adjoint representation).

18.3 Vertex Counterterm: δ1

There are two one loop diagrams contributing to the vertex renormalization of the fermio–
gauge boson interaction, they are shown in Figure 18.3. Imposing the renormalization
condition at q2 = −µ2, with qµ the momentum of the gauge boson coming out of the
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(a) (b)

Figure 18.3: One loop contributions to the fermion–gauge boson vertex. Diagram (a)
is similar to the QED case, whereas diagram (b) is only present in non abelian gauge
theories.

vertex, to the summ of these two diagrams and the counterterm diagram including δ1, we
obtain (exercise)

δ1 = − g2

(4π)d/2
Γ[ε/2]

(µ2)ε/2
[C2(r) + C2(G)] . (18.35)

We are now ready to compute the β function of a non abelian gauge theory. For this, we
need to apply (18.5) using the expressions (18.35), (18.34) and (18.32) for δ1 , δ2 and δ3,
respectively. The result is

β(g) = − g3

16π2

[11

3
C2(G)− 4

3
nf C(r)

]
. (18.36)

This is the one loop β function of a non abelian gauge theory with nF fermions2. We
can clearly see now that there is a competition between the first term coming exclusively
from the non abelian features of the theory, and the fermion loop contributions -the more
QED like behavior of the β function. As we thoroughly discussed when we introduced
the concept of the β function of an interacting theory, its sign is crucial in understanding
its behavior towards higher or lower energy scales, its renormalization flow. A positive β
function results in growing couplings in the UV, such as in the case of QED. On the other,
hand e negative sign results in an increasingly small coupling in the UV, even resulting
in a free theory in the limit µ → ∞. This is the regime known as asymptotic freedom.
Conversely, a negative β function implies a growing coupling towards the IR, signalling
that perturbation theory might fail at low energies. This typically is associated with a
phase transition as, for example is the case in QCD, an SU(3) gauge theory.

2We could also have scalars. See exercise.
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Example: SU(N)

For the case the group is SU(N), if r is the fundamental representation, and G the adjoint,
we have

C(r) =
1

2
C2(G) = N , (18.37)

Thus, the theory will be asymptotically free if β(g) < 0, which is satisfied if the number
of fermion flavors is

nf <
11

2
N . (18.38)

Then, if we considering N = 3, the gauge theory of Quantum Chromodynamics (QCD),
the number of quarks should satisfy

nq ≤ 16 , (18.39)

in order for QCD to remain asymptotically free. In the standard model of particle physics
the number of quarks flavors is nf = 6, so there is no danger. We should also keep in mind,
that the expression in (18.36) is the one loop β function. In this way, even if it vanishes
at this order, there could be higher order terms giving a non zero contributions. But if
the theory is perturbative, then the corrections to the vanishing of β come suppressed by

g2

16π2
, (18.40)

with respect to (18.36). We can refer to this behavior as “quasi-conformal”, in that the
β function is “almost” vanishing.

18.4 Gauge Invariance and Counterterm Relations

We have the lagrangian invariant under non abelian gauge symmetry given by

L = −1

4
F a
µνF

aµν + c̄a
(
∂µDac

µ

)
cc + ψ̄ (i 6D −m)ψ , (18.41)

where, once again we have the covariant derivative of the matter in a given representation
r
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Dµψ(x) =
(
i 6∂ − ig Aaµ(x)ta

)
ψ(x) , (18.42)

and the covariant derivative of a the ghosts corresponds to the one for a scalar field in
the adjoin representation, i.e.

Dac
µ c

c(x) =
(
∂µ δ

ac + g fabcAbµ(x)
)
cc(x) . (18.43)

In the lagrangian in (18.41), we fixed the gauge by ξ =∞, the unitary gauge. This makes
the gauge fixing term dissapear from L. We would like to proceed to define the theory in
terms of renormalized parameters (fields, couplings, masses) and the counterterms. We
will see that, in general there are a wealth of counterterms we can define. However, as we
will show below, there are relations that reduce the number of independent counterterms.
We start from the unrenormalized lagrangian. In terms of the unrenormalized parameters,
we write it as

L = −1

4

(
∂µA

a
0ν − ∂νAa0µ

)2
+ ψ̄0(i 6∂ −m0)ψ0 − c̄a0 ∂2 ca0

+ g0A
a
0µψ̄0γ

µtaψ0 − g0fabc(∂µAa0ν)A
bµ
0 A

cν
0

− g20
(
f eabAa0µA

b
0ν

) (
f ecdAcµ0 A

dν
0

)
− g0c̄a0fabc∂µAb0µcc0 . (18.44)

If we now define the renormalized fields by

Aaµ ≡ Z
−1/2
3 Aa0µ ,

ψ ≡ Z
−1/2
2 ψ0 , (18.45)

ca ≡ (Zc
2)

−1/2 ca0 ,

we can rewrite the lagrangian in terms of them as

L = −1

4
Z3

(
∂µA

a
ν − ∂νAaµ

)2
+ Z2 ψ̄(i 6∂ −m0)ψ − Zc

2 c̄
a ∂2 ca

+ g0Z
1/2
3 Z2A

a
µψ̄γ

µtaψ − g0 Z3/2
3 fabc(∂µA

a
ν)A

bµAcν

− g20Z
2
3

(
f eabAaµA

b
ν

) (
f ecdAcµAdν

)
− g0Z1/2

3 Zc
2 c̄

afabc∂µAbµc
c . (18.46)
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Finally, we define the most general set of counterterms by

δ2 ≡ Z2 − 1 δ3 ≡ Z3 − 1

δ1 ≡
g0
g
Z

1/2
3 Z2 − 1 δc2 ≡ Zc

2 − 1

δ3G1 ≡ g0
g
Z

3/2
3 − 1 δ4G1 ≡

g0
g
Z2

3 − 1

δc1 ≡
g0
g
Z

1/2
3 Zc

2 − 1 δm ≡ Z2m0 −m , (18.47)

Which results in a total of 8 counterterms. Now we can write the lagrangian in (18.46)
entirely in terms of renormalized parameters and the counterterms defined in (18.47). We
obtain

L = −1

4

(
∂µA

a
ν − ∂νAaµ

)2
+ ψ̄(i 6∂ −m)ψ − c̄a ∂2 ca

+ g Aaµψ̄γ
µtaψ − g fabc(∂µAaν)AbµAcν

− g2
(
f eabAaµA

b
ν

) (
f ecdAcµAdν

)
− g c̄afabc∂µAbµcc

− 1

4
δ3
(
∂µA

a
ν − ∂νAaµ

)2
+ ψ̄(iδ2 6∂ − δm)ψ − δc2 c̄a ∂2 ca

+ g δ1A
a
µψ̄γ

µtaψ − g δ3G1 fabc(∂µA
a
ν)A

bµAcν

− g2 δ4G1
(
f eabAaµA

b
ν

) (
f ecdAcµAdν

)
− g δc1 c̄afabc∂µAbµcc , (18.48)

where the top three lines correspond to the original lagrangian in terms of renormalized
parameters, and the last three lines are the counterterms. However, it is clear that not all
8 counterterms are independent. Even if we ignore the mass counterterm, we still have 7
left, but these are determined by only 4 paramters: Z2, Z3, Z

c
2 and g0/g. This means that

there must be 3 relations among the 7 counterterms. These relations are a consequence
of gauge invariance. A very useful way to see this, is in perturbation theory. In this case
we can always use the fact that

Zi ' 1 + δZi
,

g0
g
' 1 + δg , (18.49)
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where we assume that δZi
� 1 and δg � 1. Then, if we write the exact relations

δ1 − δ2 =
g0
g
Z2 Z

1/2
3 − Z2

δc1 − δc2 =
g0
g
Zc

2 Z
1/2
3 − Zc

2

δ3G1 − δ3 =
g0
g
Z

3/2
3 − Z3

δ4G1 − δ3 =
g20
g2
Z2

3 − Z3 , (18.50)

and then expand them using (18.49) we obtain

δ1 − δ2 = δc1 − δc2 = δ3G1 − δ3 =
1

2

(
δ4G1 − δ3

)
. (18.51)

This tells us, for instance, that the divergences in the vertex counterterms δ3G1 ,δ4G1 and
δc1 are removed by the same procedure that removes them in δ1, δ2 and δ3. We had derive
the β function in (18.36) from the Callan-Symanzik equation applied to the fermion-
fermion gauge boson. But (18.51) implies that we can equally derive the same result by
using the three-gauge boson or even the four-gauge boson vertices. We will even get the
same result using the gauge boson–ghost–ghost vertex.

The result in (18.51) also implies that if we have a non abelian gauge theory involving
various types of fields, then if the vertex counterterm of the field i with the gauge boson
is δi1 and its field renormalization counterterm is δi2, then the quantity

δi1 − δi2 , (18.52)

is universal for all fields.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
16.

• Quantum Field Theory , by M. Srednicki, Chapter 73.


