
Lecture 17

Quantization of Non-Abelian Gauge
Theories

Just as we did for the case of abelian gauge theories, we address the quantization of non-
abelian gauge theories by the Fadeev-Popov method. We start with a pure gauge theory
with the action

S[Aµ] = −1

4
F a
µν F

aµν , (17.1)

where, as usual, we defined
Aµ = Aaµ t

a (17.2)

and the ta are the generators of the group G. The functional integral of interest is

Z[Jµ] =

∫
DAµ eiS[Aµ]+i

∫
d4xJµ(x)Aµ(x) , (17.3)

where we coupled the gauge field to an external vector source Jµ(x). Just as for the
abelian case, in order to reduce the gauge redundancy resulting from the freedom to
choose a gauge, we write the measure of the functional integral as

DAµ = DĀµDα , (17.4)

where the Āµ(x) fields represent physically inequivalent gauge field configurations, i.e. we
cannot access a given field configuration Ā1

µ(x) belonging to the set {Āµ(x)}, by using a
gauge transformation on another member of the set, Ā2

µ(x). Then the gauge redundancy
in the measure of the functional integral is due to all the possible gauge transformations,
which are represented by the Dα factor. Implementing the Fadeev-Popov method, the
functional integral now reads

Z[Jµ] =

∫
DĀµDαF

[
G[Aαµ]

]
det

[
δG[Aαµ]

δα

]
eiS[Aµ]+i

∫
d4xJµ(x)Aµ(x) , (17.5)

where G[Aαµ] is the gauge fixing functional, and Aαµ is the gauge field after a gauge trans-
formation is applied:

Aαµ(x) = V (x)

[
Aµ(x) +

i

g
∂µ

]
V †(x) , (17.6)

1
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where g is the gauge coupling, and V (x) is a unitary transformation in the gauge group
G, i.e.

V (x) = eiα
a(x)ta , (17.7)

given in terms of the group generators ta. The functional F
[
G[Aαµ]

]
in (17.5) fixes the

gauge in the functional integral for an arbitrary choice of the gauge fixing functional
G[Aαµ].1

Since the action is gauge invariant we have that

S[Aµ] = S[Aαµ] . (17.8)

Also, the part of the measure that varies with the gauge transformation is just absorbed
in Dα. I.e.

Dα DAµ = Dα Aαµ , (17.9)

where we dropped the bars above the gauge fields for simplicity of notation.

17.1 Gauge Fixing

The next step, is to determine the gauge fixing function. For practical use, it is advanta-
geous to write the functional F

[
G[Aαµ]

]
as a Gaussian factor:

F
[
G[Aαµ]

]
= e−

i
2ξ

∫
d4xG[Aαµ ]G[Aαµ ] , (17.10)

with ξ a real parameter. With this choice the effect of the gauge fixing factor is to add a
term to the lagrangian:

Leff. = L − 1

2ξ
(G[A])2 , (17.11)

where care must be taken on the right hand side since Aµ = Aaµ(x)ta carry group indices.
Choosing a Lorentz invariant gauge fixing functional as

G[Aaµ] = ∂µAaµ , (17.12)

we then obtain

Z[Jµ] =

∫
DAµ det

[
δG[Aαµ]

δα

]
eiS[Aµ]−i

∫
d4x

(∂µAa(x))2

2ξ
+i

∫
d4xJµ(x)Aµ(x) , (17.13)

We must still deal with the determinant. We first compute its argument, i.e. the operator
of which we are computing the determinant. This is done by looking at the response

1In the derivation for the abelian case we used the delta function, so instead of F
[
G[Aα

µ ]
]
, we would

have a factor of δ
[
G[Aα

µ ]
]
. The procedure above is general insofar the gauge fixing function is arbitrary.
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of the gauge fixing function to a gauge transformation. We start by writing the gauge
transformation for the case of infinitesimally small scalar functions αa(x):

Aαµ(x) = eiα
a(x)ta

[
Aµ(x) +

i

g
∂µ

]
e−iα

a(x)ta

= Aµ(x) +
1

g
∂µα

a(x)ta + iαa(x)taAbµ(x)tb − iAbµ(x)tbαa(x)ta

= Aµ(x) +
1

g
∂µα

a(x)ta + iαa(x)Abµ(x) [tb, ta]

= Aµ(x) +
1

g
∂µα

a(x)ta − fabcαa(x)Abµ(x)tc . (17.14)

Thus, using the antisymmetry of the structure constants, fabc = −f cba, we arrive at

(Aaµ(x))α = Aaµ(x) +
1

g
∂µα

a(x) + fabcAbµ(x)αc(x) . (17.15)

We notice that the last two terms above can be written as a covariant derivative acting
on αa(x), a scalar field transforming in the adjoint representation of G. This is

Dµα
a(x) = ∂µα

a(x)− ig
(
tbG
)
ac
Abµ(x)αc(x) (17.16)

where tcG are the generators of the adjoint representation, i.e.

(tcG)ac = ifabc . (17.17)

Then, the gauge-transformed field can be written as

(Aaµ(x))α = Aaµ(x) +
1

g
Dµα

a(x) . (17.18)

We are now ready to write the gauge fixing functional. This is defined to be

G[Aα] = ∂µ
(
Aaµ(x)

)α
, (17.19)

a generalization of the gauge fixing functional we used in the abelian case. Thus,

G[Aα] = ∂µAaµ(x) +
1

g
∂µDµα

a(x) (17.20)

To compute the determinant we need first to perform the functional derivative (exercise),
which results in

δG[Aα]

δαa(x)
=

1

g
∂µDµ . (17.21)

The operator that results does not depend on the gauge parameters αa(x), as it is ex-
pected. However, unlike in the abelian case, it does depend on the gauge fields through
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the covariant derivative Dµ. Thus, the determinant of this operator depends on the field
variables being integrated in the functional integral, i.e. Aµ(x), and therefore we cannot
simply take it outside and absorb it in the normalization. Specifically, we see that

det

[
δG[Aα]

δαa(x)

]
=

1

g
det [∂µDµ] . (17.22)

The functional integral is now

Z[Jµ] =

∫
DAµ det

[
1

g
∂µDµ

]
eiS[Aµ]−i

∫
d4x

(∂µAa(x))2

2ξ
+i

∫
d4xJµ(x)Aµ(x) . (17.23)

From (17.23) we can read off the propagator for the non abelian gauge boson: it will be
exactly the same as the one we derived for the photon in QED via the functional integral:

q
=

−i
q2 + iε

(
gµν − (1− ξ)q

µqν

q2

)
δab

where the delta function for the non abelian indices is the only difference from the photon
propagator and, just as in the case of the photon, we obtain the Feynman gauge for ξ = 1.

17.2 Fadeev-Popov Ghost Fields

To proceed further, we notice that the determinant can be interpreted as resulting from
integrating out fermionic degrees of freedom (remember that if they were bosonic , the

result would be det [O]−1/2). In particular, we can write

det

[
1

g
∂µDµ

]
=

∫
DcDc̄ ei

∫
d4x c̄ (−∂µDµ) c , (17.24)

where in the right hand side we absorbed the coupling g by redefining c→ √g c. Here c
and c̄ are anticommuting Grasmann variables. However, there must be bosonic in nature
since they are scalar under Lorentz transformations. Therefore they violate the statistics
theorem. But we need not worry, these states are not physical. They are called Fadeev-
Popov ghost fields and since they only couple to gauge fields and do not couple to external
sources they can only appear in loops.

The ghost fields are scalars transforming in the adjoint representation of G. Therefore

Dµc
a = ∂µc

a + gfabcAbµ c
c . (17.25)



17.2. FADEEV-POPOV GHOST FIELDS 5

a c

p

= g  f    p
abc

Figure 17.1: Feyman rule for the interaction of ghost fields with the gauge field.

Thus it is convenient to wrtite the covariant derivative as the operator

Dac
µ = δac∂µ + gfabcAbµ . (17.26)

Then the determinant in (17.23) results in a new term in the gauge lagrangian involving
the ghost fields

Lgauge = −1

4
F a
µνF

aµν − 1

2ξ

(
∂µAaµ

)2
+ c̄a

(
−∂µDac

µ

)
cc . (17.27)

As mentioned above, the ghost fields only interact with gauge bosons. To derive the
corresponding Feynman rule, we focus on the last term in (17.27)

Lghosts = c̄a
(
−δab∂2 − gfabc∂µAbµ

)
cc , (17.28)

where we should be careful to notice that the derivative in the second term applies to
both the gauge and ghost fields. From this we derive the ghost propagator

Dab
G (x− y) =

∫
d4k

(2π)4
δab

i

k2
e−ik·(x−y) , (17.29)

and the ghost-gauge field interaction

LG−A = −gfabcc̄a∂µ(Abµc
c) . (17.30)

This results in the Feynman rule illustrated in Figure 17.1. The momentum is on the line
with the a superscript as a result of integration by parts in (17.30).

The appearance of the ghost fields is a reflection of gauge invariance, as imposed by the
quantization procedure in the functional integral. The Fadeev-Popov trick of introducing
the ghosts allows us to derive the Feyman rules from the generating functional Z[J ] as
usual. Thus, the presence of the ghost fields guarantees that gauge invariance is preserved.
This can be seen, for instance, in processes with external gauge bosons. In the absence
of ghosts, there will be contributions coming from unphysical polarizations. These are
cancelled by the contributions from ghost fields. This is seen very clearly in the non-
interacting theory. In this case, the ghost determinant is simply

det
[
−∂2

]
. (17.31)
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On the other hand, the non-interacting gauge bosons will result in their own bosonic
determinant (one for each spatial component Aµ)

det
[
−∂2

]−2
, (17.32)

where the −2 results from −d/2 in four dimensions. We see that in this simple exam-
ple, the ghost determinant does cancell two of the contributions from two of the spatial
components of the gauge fields. These are the two unphysical polarizations, spacelike
and timelike. To see how these cancellation occurs in the more general case, i.e. in the
presence of interactions, it is useful to introduce a new global symmetry, BRST. We do
this in what follows.

17.3 BRST Invariance

The complete lagrangian of the non-abelian gauge theory, including fermions, gauge
bosons, ghosts and gauge fixing is

L = −1

4
F a
µνF

aµν − 1

2ξ

(
∂Aaµ

)2
+ c̄a(−∂µDac

µ )cc + ψ̄ (6D −m)ψ . (17.33)

The lagrangian above can be written in a different way by introducing a scalar auxiliary
field Ba transforming in the adjoint of G. This is

L = −1

4
F a
µνF

aµν + c̄a(−∂µDac
µ )cc + ψ̄ (6D −m)ψ +

1

2
ξ(Ba)2 +Ba∂µAaµ . (17.34)

First, we see that the field Ba(x) does not have a kinetic term. This means it does not
propagate. This is the reason why we call it an auxiliary field. In order to convince
ourselves that (17.34) is equivalent to (17.33) we integrate out the auxiliary field in the
former. Then we have to perform the functional integral∫

DB ei
∫
d4x{(1/2)ξ(Ba)2+Ba∂µAaµ} , (17.35)

In order to “complete the square” to decouple the auxiliary field from the gauge containing
the gauge field so we we can have a quadratic form to integrate, we make the susbstitution

Ba → Ba − 1

ξ
∂µAaµ . (17.36)

Then, we obtain ∫
DB ei

∫
d4x{(1/2)ξ(Ba)2+Ba∂µAaµ} = Ne−i

∫
d4x 1

2ξ
(∂µAaµ)2 , (17.37)

where the normalization corresponds to the actual integral over the Ba(x). Thus we
prove that (17.34) is equivalent to (17.33), our original lagrangian for a non-abelian gauge
theory.
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The lagrangian in (17.34) possesses a global symmetry, under the following transforma-
tions:

δAaµ(x) = θ Dac
µ c

c(x) (17.38)

δψ(x) = ig θ ca(x)ta ψ(x) (17.39)

δca(x) = −1

2
g θ fabc cb(x) cc(x) (17.40)

δc̄a(x) = θ Ba(x) (17.41)

δBa(x) = 0 , (17.42)

where θ is a Grassmann (anticommuting) infinitesimal constant. These so called BRST
transformations leave (17.34) invariant. Thus non abelian gauge theories possess a global
symmetry – the BRST symmetry – in addition to gauge invariance.

To check that (17.34) is invariant under the BRST transformations (17.38)–(17.42),
we first recall that an infinitesimal gauge transformation is given by

δAaµ(x) =
1

g

(
∂µα

a(x) + gfabcAbµ(x)αc(x)
)

=
1

g
Dac
µ α

c(x) . (17.43)

Thus, if in (17.38) we identify
g θ cc(x)↔ αc(x) , (17.44)

then we see that (17.38) is just a gauge transformation with the gauge parameter given
by g θ cc(x). This is correct since the product of the two scalar anticommuting variables
θ cc(x) results in a scalar commuting variable (as it should since we identify it as the
gauge paramenter αc(x)). Similarly, the BRST variation in (17.39) corresponding to the
fermion field change, corresponds to the same gauge transformation using (17.44). Thus,
the first two shifts due to a global BRST transformation correspond to the usual shifts
of the gauge and fermion fields under a specific gauge transformation involving the ghost
fields as given by (17.44). The first and third terms in (17.34) are invariant under the
BRST symmetry transformation.

The fourth term is obviously invariant due to (17.42). We can now consider the second and
fifth terms. For the second term we have that its variation under a BRST transformation
is

δ
[
c̄a(−∂µDac

µ )cc
]

= δc̄a(−∂µDac
µ )cc + c̄a δ

[
(−∂µDac

µ )cc
]
. (17.45)

The first term in the right hand side above is in fact

δc̄a(−∂µDac
µ )cc = θBa(−∂µDac

µ )cc , (17.46)
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where we used (17.41). But this cancels against the BRST variation of the last term in
(17.34), which is given by

δ
[
Ba∂µAaµ

]
= Ba ∂µδAaµ
= θBa∂µDac

µ c
c , (17.47)

where we used (17.42) to set δBa = 0 in the first equality, and we used (17.38) in the
second. Finally, the second term in (17.45) vanishes, given that

δ
[
Dac
µ c

c
]

= 0 . (17.48)

We leave the proof of this equality as an exercise.

17.4 BRST Operator and Separation of States

We then have proved that the lagrangian of a non-abelian gauge theory, appropriately
supplemented with the ghost terms, equation (17.34), is invariant under the BRST trans-
formations (17.38)–(17.42). Thus, even after fixing the gauge in (17.33) or (17.34), (i.e.
for fixed ξ) we still have a global symmetry.

In order to better understand the meaning of the BRST symmetry, we introduce the
BRST operator Q. Its action on a given field is to produce a BRST variation as defined
by (17.38)–(17.42), such as

θQφ = δφ . (17.49)

So, for instance we have

QAaµ(x) = Dac
µ c

c(x) , (17.50)

or

Qψ = igca(x) ta ψ(x) , (17.51)

and so on. The crucial property of the BRST operator Q is that is nilpotent:

Q2φ = 0 . (17.52)

For instance,

θ2Q2Aaµ = δ
[
δAaµ

]
= δ

[
Dac
µ c

c
]

= 0 , (17.53)

where in the last equality we used (17.48). Similarly, we can prove thatQ2ψ = 0, Q2ca = 0,
etc.

To study the consequences of (17.52) it is useful to consider the theory in the hamiltonian
picture as if we had proceeded with canonical quantization. The BRST symmetry of
the lagrangian described by equations (17.38)–(17.42) implies that there is a conserved
charge, Q, which commutes with the hamiltonian. In our case obviously the charge Q is
the one defined by (17.49). Since Q commutes with H and is nilpotent, i.e. Q2 = 0, the
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eigenstates of H are divided in three separate subspaces. The first one is the so called
kernel H0, such that states |ψ0〉 belonging to it satisfy

Q|ψ0〉 = 0 . (17.54)

The second subspace is H1 and its states satisfy

Q|ψ1〉 6= 0 . (17.55)

Finally, the subspace H2, called the image of Q, has states that satisfy

|ψ2〉 = Q|ψ1〉 . (17.56)

We see that the states belonging to H2 have zero norm

〈ψ2|ψ2〉 = 0 . (17.57)

They also have zero inner product with the kernel states:

〈ψ2|ψ0〉 = 〈ψ1|Q|ψ0〉 = 0 . (17.58)

In order to identify which states in the non abelian gauge theory belong to each of the
subspaces, we consider the limit of the free theory (g → 0) and the action of Q on the
various fields. First, we recall that in addition to the two transverse polarizations of the
gauge bosons there are two unphysical polarizations: the longitudinal and the timelike
polarizations. We can combine these two to create an orthogonal basis given by

ε+µ =
1

2|k|
(
k0,+k

)
, ε−µ =

1

2|k|
(
k0,−k

)
, (17.59)

which we refer to as the forward and backward polarizations, respectively. Then, we see
that in the g → 0 limit the action of Q on the gauge boson is to turn it into a ghost field:

QAaµ = ∂µc
a . (17.60)

This means that the original gauge boson was of the forward type, since its Lorentz
structure must be proportional to kµ. Also at g = 0, we see from (17.40) that Q annihilates
a ghost field. Finally, we see from (17.41) that Q turns an anti-ghost field into the auxiliary
field Ba. But if we derive the equations of motion for this field from the lagrangian (17.34)
we obtain

∂L
∂Ba

= ξBa + ∂µAaµ = 0 , (17.61)

since there are no derivate terms. Thus we have

ξBa = −∂µAaµ , (17.62)

which tells us that the auxiliary field Ba can be identified as the degrees of freedom in
Aaµ that satisfy kµεµ 6= 0. These correspond to the backward polarization ε−µ of Aaµ. So in
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sum, we conclude that the forward polarization of Aaµ and the anti-ghosts must belong to
H1 since they are not annihilated by Q; the backward polarization of Aaµ and the ghost
fields must belong to H2, since they are obtained by the application of Q to other states
and therefore annihilated by it; and finally the transverse gauge bosons belong to H0

since they are always annihilated by Q. Although we derived this separation in the g → 0
limit, we can extend this conclusions for the single-particle asymptotic states appearing in
processes involving interactions. Thus, independent physical states are those that belong
to H0 up to a term that belong to H2, since these states have zero inner product either
with themselves or with states belonging to the kernel of Q.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
16.

• The Quantum Theory of Fields, Vol. I, by S. Weinberg, Chapter 15.
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