
Lecture 16

Feynman Rules in Non Abelian
Gauge Theories

Here we press on with non-abelian gauge theories by deriving their Feynman rules. How-
ever, before we can safely apply them to compute scattering amplitudes in perturbation
theory and, specially before we can study the renormalization of these gauge theories, we
will see at the end of this lecture that there is something missing. In order to solve this
problem, we will have to be carefull in quantizing non-abelian gauge theories, as we will
do in the next lecture.

16.1 Derivation of the Feynman Rules

We start by considering a generic a theory of a fermion that transforms as

ψ(x)→ g(x)ψ(x) = eiα
a(x)ta ψ(x) , (16.1)

under a generic non abelian gauge symmetry. The lagrangian of the theory is then

L = ψ̄ (i 6D −m)ψ − 1

4
F a
µνF

aµν , (16.2)

where the covariant is given by

Dµψ(x) = (∂µ − ig Aaµ(x) ta)ψ(x) , (16.3)

and the ta are the generators of the gauge group G written in the appropriate represen-
tation. The non abelian field strength is

1
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F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (16.4)

As we saw earlier, this means that there will be interactions terms in the gauge field
“kinetic term”, the last one in (16.2). Thus, for the purpose of deriving all the Feynman
rules it is convenient to split the lagrangian in (16.2) into a truly free lagrangian and
interacting terms. We define

L = L0 + Lint. (16.5)

where the free lagrangian is now

L0 ≡ ψ̄(i 6∂ −m)ψ − 1

4

(
∂µA

a
ν − ∂νAaµ

)
(∂µAaν − ∂νAaµ) . (16.6)

On the other hand, the interaction part of the lagrangian defined in (16.5) can be itself
separated into three terms given by

Lint. = Lfint. + L3G
int. + L4G

int. , (16.7)

denoting the interactions of gauge bosons with fermions,

Lfint. = gAaµψ̄γ
µtaψ , (16.8)

the triple gauge boson interaction

L3G
int. = −gfabc∂µAaνAbµAcν , (16.9)

and the quartic one

L4G
int. = −1

4
g2fabcfadeAbµA

c
νA

dµAeν , (16.10)

respectively. It is now straightforward to derive the Feynman rules from (16.8), (16.9)
and (16.10).

We start with the fermion interaction. The Feynman rule is very similar to that of QED,
but with the addition of the gauge group generator. This is shown in the figure below:
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= i gγµ ta

Next, we consider the triple gauge boson interaction in (16.9). Here we have to be more
careful with the momentum flow since it involves a derivative on one of the gauge fields. To
obtain the Feynman rule from iL3G

int. we need to contract it with all possible combinations
of the state

|k, ε(k); p, ε(p); q, ε(q)〉 . (16.11)

There are 3! such contractions. For instance, if we contract the gauge boson of momentum
k with ∂µAaν , the one with momentum p with Abµ and the one with momentum q with
Acν , we obtain the following contribution to the Feynman rule

−igfabc(−ikν)gµρ . (16.12)

This corresponds to the last term in the Feynman rule shown in the figure below. All
possible 6 contractions result in the Feynman rule shown there.

k

p q

= g fabc [gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ]
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Finally, we derive the Feynman rule for the quartic interaction from (16.10). coming from
the product of the last term in Ga

µν with the similar term in Gaµν . This is given by

= −ig2
[
fabef cde (gµρgνσ − gµσgνρ)

+ facef bde (gµνgρσ − gµσgνρ)
+ fadef bce (gµνgρσ − gµρgνσ)

]

Notice that, although this last Feynman rule starts at order g2, it cannot be considered of
a higher order in perturbation theory than the other two. What matter is the computation
of the amplitude o a given process to the desired order in g. For instance, if we wish to
compute the leading order contributions to the scattering of two gauge bosons going to
two gauge bosons, we see that the second Feynman rule can be used to form contributions
with two vertices and one gauge boson propagator. These are of order g2. On the other
hand, the last Feynman rule is a contribution to the amplitude in and on itself. So all
the leading order contributions to this process are of the same order, g2.

16.2 Ward Identity and the Missing Link

We have seen that in QED the Ward identity being satisfied is equivalent to gauge invari-
ance. Specifically, when we consider amplitude with an external gauge boson, such as the
one depicted in Figure 16.1, (taken from Part I, lecture 18).

Generically, we can write the amplitude of such process as

A = εµ(k)Mµ , (16.13)

Assuming all external particles are on-shell1, the Ward identity states that

kµMµ = 0 . (16.14)

We would like to check the generalization of the validity of (16.14) for non-abelian gauge
theories. Naively, we would expect that gauge invariance would impose it. However, as

1The contact terms vanish when particles are on-shell.
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Figure 16.1: Process with an external gauge boson. Dotted lines denote possible additional
external particles. All shown particles are on-shell.

we will see below, this is not the case. Or at least it is not at this stage. We will see that
the problem is not that gauge invariance is not satisfied, but that we have not properly
quantized the theory.

To see that we have a problem, we will compute the amplitude for a process involving
external gauge bosons in a non-abelian gauge theory. In particular we will consider the pair
production of gauge bosons in the scattering of fermions: f f̄ → V1V2. The corresponding
Feynman diagrams are shown in Figure 16.2.

The first two diagrams, (a) and (b) are similar to those present in the abelian case, i.e. in
QED. On the other hand, diagram (c) is a new element: it involves the interactions among
three gauge bosons and it marks the non-abelian character of the gauge interaction. We
then consider first the abelian part of the amplitude given by the sum of diagrams (a)
and (b). This is given by

iA(a+b) = iMµν
(a+b) ε

∗
µ(k1) ε

∗
ν(k2)

= (ig)2 v̄(p1)γ
µta

i

6p2− 6k2 −m
γνtbu(p2) ε

∗
µ(k1) ε

∗
ν(k2)

(16.15)

+ (ig)2 v̄(p1)γ
νtb

i

6k2− 6p1 −m
γµtau(p2) ε

∗
µ(k1) ε

∗
ν(k2) ,

In order to test the Ward identity, we will first compute the contraction of the contri-
butions to Mµν

(a+b) with one of the external momenta, say k2, replacing the associated

polarization, ε∗ν(k2) . Then we have



6 LECTURE 16. FEYNMAN RULES IN NON ABELIAN GAUGE THEORIES

(a) (b)

(c)

p
1

p
1

p
1

P2 P2

P2

k
1

k
1

k
1

k2

k2

k2

a

b

c

a

b

b

a

Figure 16.2: Feynman diagrams for the process ff̄ → V1V2 in a non-abelian gauge theory.
The fermions are both incoming with momenta (p1 and p2, and the gauge bosons outgoing
with k1 and k2. The arrows in the fermion lines indicate a fermion or an anti-fermion.
The indices a, b and c in the gauge bosons refer to the associated generators, ta, tb and tc.

iMµν
(a+b)ε

∗
µ(k1) k2ν = (ig)2v̄(p1)

{
γµta

i

6p2− 6k2 −m
6k2tb

+ 6k2tb
i

6k2− 6p1 −m
γµta

}
u(p2) ε

∗
µ(k1) . (16.16)

In order to put the expression above in a more useful form, we will make use of the Dirac
equation for the spinors. In particular, using that

( 6p2 −m) u(p2) = 0

(16.17)

v̄(p1) (6p1 +m) = 0 ,

we rewrite (16.16) as



16.2. WARD IDENTITY AND THE MISSING LINK 7

iMµν
(a+b)ε

∗
µ(k1) k2ν = (ig)2v̄(p1)

{
γµta

i

6p2− 6k2 −m
( 6k2− 6p2 +m)tb

+(6k2− 6p1 −m)tb
i

6k2− 6p1 −m
γµta

}
u(p2) ε

∗
µ(k1) ,

(16.18)

= (ig)2 v̄(p1)(−i)γµ [ta, tb]u(p2) ε
∗
µ(k1) ,

where in the second line we simply collected the two terms after cancelling the propagators.
Using the algebra of the group

[ta, tb] = i fabc tc , (16.19)

we obtain

iMµν
(a+b) ε

∗
µ(k1) k2ν = (ig)2 fabc v̄(p1) γ

µ tc u(p2) ε
∗
µ(k1) . (16.20)

The expression above is clearly not equal to zero. However, its form being proportional to
the structure constants fabc suggests that it might in fact be cancelled by the contribution
of diagram (c) in Figure 16.2, which according to the Feynman rules derived for the triple
gauge boson interaction in the previous section, contains such dependence. To check if
this is the case, we first write the amplitude for diagram (c):

iA(c) = iMµν
(c) ε

∗
µ(k1) ε

∗
ν(k2)

= ig v̄(p1) γρ t
c u(p2)

(−i)
k23

g fabc (16.21)

×
{
gµν(k2 − k1)ρ + gνρ(k2 − k3)µ + gρµ(k1 − k2)ν

}
ε∗µ(k1) ε

∗
ν(k2) .

We now replace one of the external polarizations, say ε∗ν(k2), by the associated momentum
k2ν . We obtain

iMµν
(c) ε

∗
µ(k1) k2ν = ig2 v̄(p1) γρ t

c u(p2)
(−i)
k23

ε∗µ(k1) f
abc

×
{

(kµ2 (k2 − k1)ρ + kρ2(k2 − k3)µ + gρµ(k1 − k2) · k2
}
. (16.22)

The expression above can be greatly simplified by using momentum conservation at the
vertices. For instance, using
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k2 = −k1 − k3 , (16.23)

and substituting k2 in (16.22), we obtain

iMµν
(c) ε

∗
µ(k1) k2ν = ig2 v̄(p1) γρ t

c u(p2)
(−i)
k23

ε∗µ(k1) f
abc

×
{
gρµk23 − k

ρ
3 k

µ
3 − gρµ k21 + kρ1 k

µ
1

}
. (16.24)

We can already verify that the first term in the last line in the brackets in (16.24) results
in a total cancellation with iMµν

(a+b) ε
∗
µ(k1) k2ν in (16.20). Thus, if we can argue that the

remaining three contributions vanish, we would prove the Ward identity.

First, we consider the obvious: since the external gauge bosons are set on shell, we have
k21 = 0, which makes the third term in the brackets trivially zero.

Let us now consider the second term in the brackets in (16.24): −kρ3k
µ
3 . The first four

vector is contracted with the gamma matrix resulting in a factor of

v̄(p1) 6k3 tc u(p2) = −v̄(p1) ( 6p1+ 6p2) u(p2)

= −v̄(p1) (−m+m) u(p2) = 0 ,

where we used p1 + p2 = −k3, momentum conservation in the left vertex in diagram (c)
of Figure 16.2. So this contribution is also zero.

Finally, the last term in the brackets gets contracted with the polarization, resulting in a
factor

ε∗µ(k1) k
µ
1 , k

ρ . (16.25)

But, if we impose that this external gauge boson is transverse, then it should be satisfied
that

ε∗(k1) · k1 = 0 , (16.26)

which means that this term also has a vanishing contribution. This would complete our
test of the Ward identity, i.e. it would prove that

iMµν
(a+b+c) ε

∗
µ(k1) k2ν = 0 . (16.27)
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Figure 16.3: The optical theorem and non abelian gauge theory pair production of gauge
bosons.

Unfortunately, this proof is incorrect. The culprit is the very last step, assuming that
external gauge bosons are transverse and therefore satisfy (16.26). In QED, when we
test the Ward identity, the fact that the longitudinal and time-like polarizations do not
contribute is automatic and does not need to be imposed by hand. It is a consequence
of gauge invariance. Here, however, we seem to be forced to impose (16.26) in order
to satisfy the Ward identity. This should not be necessary. On the other hand, not
imposing transversality we seem to be concluding that the polarizations that should be
non-physical not only violate the Ward identity, but also seem to be contributing to
physical observables.

One could that we could just ignore the contributions of the unphysical polarizations to
the process at hand: the pair production of two gauge bosons. However, this would be
inconsistent with the optical theorem. According to it, the cross section in question (in
leading order in perturbation theory) should be related to the imaginary part of the one
loop amplitude of ff̄ → ff̄ scattering, as shown in Figure 16.3.

In the loop diagram we need to include all gauge boson polarizations, which are contained
in each factor of gµν gauge boson propagators. This means that we cannot simply choose
to ignore the unphysical contributions in the pair production amplitude in the right of
the Figure. The optical theorem forces us to keep these contributions. The meaning of
their presence will be revealed when we realized that we have not properly quantized the
non abelian gauge theory. We will do this in the next lecture.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
15.

• Quantum Field Theory , by M. Srednicki, Chapter 69.


