
Lecture 15

Non Abelian Gauge Symmetries

We consider here the generalization of the concept of gauge invariance when the gauge
group G is non abelian. Below, we will see what this means by presenting the basics of
non abelian group theory. We will also study the physical consequences of non abelian
gague invariance. But before we do all that, we will take another look at abeliang gauge
theory, i.e. when G = U(1), by thinking about gauge invariance in a geometric way.

15.1 Gauge Invariance and Geometry

We consider the action of a U(1) local symmetry transformation on a fermion field ψ(x).
It is given by

ψ(x)→ ψ′(x) = eiα(x) ψ(x) . (15.1)

As we well know, terms in the lagrangian that do no contain derivatives are trivially
invariant under (15.1). For instance, the fermion mass term transforms as

mψ̄ψ → mψ̄′ψ′ = mψ̄ψ . (15.2)

However, terms containing derivatives are not invariant. Let us study in detail how the
problem arises. We write the derivative by using a direction in spacetime defined by a
four-vector nµ, such that

nµ∂µψ(x) = lim
ε→0

1

ε
[ψ(x+ εn)− ψ(x)] , (15.3)

where the argument of the first term on the left hand side must be understood as
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xµ + εnµ = xµ + ∆xµ . (15.4)

But the fields ψ(x + εn) and ψ(x) have different gauge transformations as clearly seen
from (15.1). The fact that they are evaluated in different spacetime points means that
the gauge parameters of their transformations are different, i.e. α(x+ εn) and α(x). This
translates in ∂µψ(x) not having a well defined gauge transformation.

The situation is similar to what happens in general relativity when we want to compare
two objects with non-trivial transformation properties, e.g. vectors or spinors, at two
different positions in spacetime. For instance, if the objects being compared are two
vectors, then part of the variation comes from the fact that the curvature will change the
orientation of a vector as we move it from one point to another. But we are interested in
the intrinsic variation due to some dynamical effect. For this purpose we define a parallel
transport. Our case is no different.

We define the scalar function

U(y, x) , (15.5)

depending on two spacetime points x and y in such as way that it transforms under the
U(1) gauge symmetry as

U(y, x)→ eiα(y) U(y, x) e−iα(x) . (15.6)

We call U(y, x) a comparator. This clearly means that U(y, y) = 1. Also, it means that

U(y, x)ψ(x)→ eiα(y) U(y, x)ψ(x) . (15.7)

Thus, the product of the comparator times the field in x, transforms as an object located
in y. We can use this to define a new derivative as

nµDµ ≡ lim
ε→0

1

ε
[ψ(x+ εn)− U(x+ εn, x)ψ(x)] , (15.8)

so that the two terms being subtracted transform in the same way under the gauge
symmetry. This is the case given that under a U(1) gauge transformation

ψ(x+ εn) → eiα(x+εn) ψ(x+ εn)

(15.9)

U(x+ εn, x)ψ(x) → eiα(x+εn) U(x+ εn, x)ψ(x) .
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Based on the definition of the covariant derivative in (15.8) we can recover the familiar
form of Dµψ(x). For this purpose, we first expand the comparator at leading order in ε
as

U(x+ εn, x) = 1− iεnµAµ(x) +O(ε2) , (15.10)

where the linear term in the expansion must depend also on the direction nµ, but then this
Lorentz index must be contracted with a four-vector that generally depends on x, which
we call Aµ(x). Implicit in the form of the expansion we used in (15.10) is the assumption
that the comparator can be written as a phase, since the normalization can always be
absorbed in redefinitions of the fields, here ψ(x). Replacing (15.10) in (15.8) we have

nµDµ ψ(x) = lim
ε→0

1

ε
[ψ(x+ εn)− ψ(x) + iεnµAµ(x)]

(15.11)

= lim
ε→0

1

ε
[ψ(x+ εn)− ψ(x)] + inµAµ(x) ,

where we neglected terms of higher order in ε since they do not contribute when taking
the limit ε → 0. The first term above is just the normal derivative as defined in (15.3),
so we obtain

Dµψ(x) = ∂µψ(x) + iAµ(x)ψ(x) , (15.12)

which is of course the usual definition of the covariant derivative. The vector field Aµ(x)
will also transform under the gauge symmetry. To extract its transformation law, we need
to look at the expansion of the transformation of the comparator U(y, x) which defines
Aµ(x). This is,

U(x+ εn, x) → eiα(x+εn) U(x+ εn, x) e−iα(x)

1− iε nµAµ(x) + · · · → (1 + iα(x+ εn) + · · · ) (1− iε nµAµ(x) + · · · ) (1− iα(x) + · · · )

→ 1 + i(α(x+ εn)− α(x))− iε nµAµ(x) + · · · , (15.13)

where the dots indicate both higher orders in ε and in the α’s. We point out that we are
not using an infinitesimal α(x), but that the higher orders terms in α actually identically
cancel. Dividing both sides of (15.13) by ε and taking the limit for ε→ 0 we obtain
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Aµ(x)→ Aµ(x)− ∂µα(x) , (15.14)

as expected. Combining (15.14) and (15.12) one can easily verify that the covariant
derivative transforms as

Dµψ(x)→ eiα(x)Dµψ(x) , (15.15)

which guarantees that all terms in the lagrangian are now gauge invariant if the covariant
derivative replaces the normal derivative. That is, the first term in

L = ψ̄iγµDµψ −mψ̄ψ , (15.16)

is U(1) gauge invariant since the covariant derivative of ψ(x) transforms as the field ψ(x).

A final question is the definition of a kinetic term for the connection field Aµ(x). Here, we
will make use of a method that, although appears too complicated for the abelian case, it
will be very useful when applied to non abelian gauge theories later. What we are after
is a term that depends quadratically on derivatives of Aµ(x). What we will start with is
the following differential operator applied to the fermion field:

[Dµ, Dν ]ψ(x) . (15.17)

This is the commutator of the covariant derivatives applied ψ(x). Using (15.15) is easy
to verify that (15.17) transforms like the field, that is

[Dµ, Dν ]ψ(x)→ eiα(x) [Dµ, Dν ]ψ(x) . (15.18)

This can be interpreted as a transformation rule for the commutator:

[Dµ, Dν ]→ eiα(x) [Dµ, Dν ] e
−iα(x) . (15.19)

On the other hand, we can explicitly compute the commutator by using (15.12). This is

[Dµ, Dν ]ψ(x) = [∂µ + iAµ, ∂ν + iAν ]ψ(x)

= i (∂µAν − ∂νAµ) ψ(x) , (15.20)
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which reveals that the commutator of the covariant derivatives is itself not a differential
operator.

We then define

[Dµ, Dν ] ≡ i Fµν , (15.21)

which is clearly gauge invariant, since the commutator transformation rule (15.19) implies

Fµν → eiα(x) Fµν e
−iα(x) = Fµν . (15.22)

This can be alternatively seen from (15.18) in combination with the field transformation
(15.1), since the commutator is not a differential operator. Then, two powers of Fµν would
give us what we want for a gauge field kinetic term.

This concludes our rederivation of the U(1) gauge invariant lagrangian

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν + · · · , (15.23)

where the factor of −1/4 is necessary to recover the electromagnetic strength tensor in
the classical limit, and the dots denote possible gauge invariant higher dimensional (non-
renormalizable) terms.

15.2 Non Abelian Gauge Groups

We will now follow the same geometric procedure we applied for a U(1) gauge theory
for the case of non abelian groups. We first consider the case of G = SU(2) and later
generalize our results for arbitrary non abelian groups. SU(2) is isomorphic with SO(3)
the group of rotations in 3 dimensions, so it should be familiar from the study of angular
momentum in quantum mechanics. The elements of SU(2) are unitary matrices which
we write as

g(x) = eiα
a(x)ta , (15.24)

where ta are the generators (three of them from 22 − 1), which are given in terms of the
Pauli matrices by

ta =
σa

2
, (15.25)

with
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σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (15.26)

As we see from (15.24), there are 3 coefficient functions of x, α1(x), α2(x) and α3(x), so
that the exponent is the most general x dependent expansion of the generators. Let us
consider, just as in the previous section for the U(1) case, the transformation of a fermion
field under a SU(2) gauge group. This is given by

ψ(x)→ ψ′(x) = eiα
a(x)ta ψ(x) = g(x)ψ(x) . (15.27)

If a fermion field does transform as in (15.27) this implies that it has an SU(2) internal
index. Depending on the representation under which they transform they will be different
multiplets. The fundamental representation correspond to using (15.25) and implies that
the fermion field is an SU(2) doublet

ψ(x) =

 ψ1(x)

ψ2(x)

 , (15.28)

which means there are two fermions. The local transformation (15.27) mixes these two
components.

We are now in a position to define the covariant derivative. Just as before, we define the
comparator U(y, x) with the gauge transformation property

U(y, x)→ g(y)U(y, x) g†(x) . (15.29)

and just as for the U(1) case before, the covariant derivative has the geometric definition

nµDµψ(x) = lim
ε→0

1

ε
[ψ(x+ εn)− U(x+ εn, x)ψ(x)] . (15.30)

Noticing that

U(y, y) = 1 , (15.31)

the identity in 2×2 matrices, we can expand U(y, x) around this considering infinitesimal
gauge transformations αa(x) ∼ O(ε). The most general expansion to leading order is

U(x+ εn, x) = 1 + igεnµAaµ(x) ta +O(ε2) , (15.32)
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where we included a factor g, the coupling, and the Lorentz index in nµ is contracted by
the fields Aaµ(x), where the index a contracts with the one in the generator. This reflects
the fact that the most general expansion is a linear combination of the 3 Pauli matrices,
meaning that now we will have 3 gauge fields, A1

µ(x), A2
µ(x) and A3

µ(x). Then, we have

nµDµψ(x) = lim
ε→0

1

ε
[ψ(x+ εn)− U(x+ εn, x)ψ(x)]

(15.33)

= nµ∂µψ(x)− ignµAaµ(x) taψ(x) ,

which results in the covariant derivative

Dµψ(x) =
(
∂µ − ig Aaµ(x) ta

)
ψ(x) . (15.34)

For the case at hand, i.e. G = SU(2) the generators in (15.34) are one half of the Pauli
matrices. This is the covariant derivative acting on a fermion ψ that trasnforms under the
SU(2) gauge group as in (15.27). As we will see below, this determines the interactions
of fermions with the SU(2) gauge bosons Aaµ(x).

The next step is to obtain the gauge transformations for the gauge fields. Once again,
to do this we consider the infinitesimal gauge transformation of the comparator. Using
(15.29) this is given by

U(x+ εn, x) → g(x+ εn)U(x+ εn, x) g†(x)

(15.35)

1 + ig εnµAaµ(x) ta → g(x+ εn)
(
1 + igεnµAaµ(x) ta

)
g†(x) ,

where in the second line we use the expansion in (15.32). We notice that

g(x+ εn) g(x) =

[(
1 + εnµ

∂

∂xµ
+O(ε2)

)
g(x)

]
g†(x)

(15.36)

= 1 + ε nµ∂µ(g(x)) g† .

Replacing the equation above in (15.35), we have that

Aaµ(x) ta → g(x)
(
Aaµ(x) ta

)
g†(x)− i

g
(∂µg(x)) g†(x) . (15.37)
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If we now define the gauge field matrix

Aµ(x) ≡ Aaµ(x) ta , (15.38)

we can rewrite (15.37) as

Aµ(a)→ g(x)

(
Aµ(x) +

i

g
∂µ

)
g†(x) , (15.39)

where we have used the fact that g†g = gg† = 1 in order to make the replacement

∂µ(g(x)) g†(x) = −g(x)∂µg
†(x) . (15.40)

The gauge transformation of the matrix gauge field (15.39) is actually valid for any non
abelian gauge group, not just SU(2), as long as g(x) is a group element expressed in
terms of the generators ta as in (15.24). We can also recover the abelian gauge field
transformation (15.14) if we replace ta by the identity and αa(x) is just α(x). However
this is deceiving since there are new contributions that appear exclusively in the non
abelian case. To see this in the gauge field transformation, we consider an infinitesimal
gauge transformation with

g(x) = 1 + i αa(x) ta + · · · (15.41)

where the dots denote terms higher in powers of αa(x). Replacing (15.41) in (15.39) we
arrive at

Aaµ(x) ta → Aaµ(x) ta +
1

g
∂µα

a(x) ta + i
[
αa(x) ta, Abµ(x) tb

]
+ · · · . (15.42)

The first two terms in (15.42) are analogous to what we find in the abelian case. But
the third term is only present in non abelian gauge groups since it is proportional to
the commutator of two generators. We will see below that this non commutativity has
important physical consequences.

With the definition of the covariant derivative in (15.34) and the gauge field tranformation
(15.39) we can prove that the fermion kinetic term given by

ψ̄γµDµψ , (15.43)

is invariant under the gauge transformations (15.27). This means that under these gauge
transformations
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Dµψ(x)→ g(x)Dµψ(x) , (15.44)

must be satisfied. This can be explicitly verified just by substitution.

The final step, just as in the abelian case considered earlier, is to obtain the kinetic term
for the gauge fields. Following the steps taken there, we need to compute

[Dµ, Dν ]ψ(x) . (15.45)

Using the matrix notation (15.38) and replacing the explicit form of the covariant deriva-
tive (15.34) in (15.45) we obtain

[Dµ, Dν ]ψ(x) = −ig (∂µAµ − ∂νAµ)ψ(x)− g2 [Aµ, Aν ]ψ(x) . (15.46)

Once again, just as for the abelian case, we see that the commutator in (15.45) is not a
differential operator. But unlike for the abelian case, there is a new term proportional to
the commutator

[Aµ, Aν ] = AaµA
b
ν [ta, tb] . (15.47)

Defining the gauge field strength (matrix) by

[Dµ, Dν ]ψ(x) ≡ −ig Fµν ψ(x) , (15.48)

we have that

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] , (15.49)

which can be expressed in gauge field components using (15.38) to give

Fµν =
(
∂µA

a
ν − ∂νAaµ

)
ta − ig AaµAbν [ta, tb] . (15.50)

Defining the gauge field strength F a
µν by

Fµν ≡ F a
µν t

a , (15.51)

and writing the commutator out in terms of the structure constants we arrive at
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F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (15.52)

which is the non abelian gauge field strength in all generality. For instance for and SU(2)
gauge theory we have

F a
µν = ∂µA

a
ν − ∂νAaµ + gεabcAbµA

c
ν , (15.53)

since the structure constants are given by the epsilon tensor εabc.

Now, given (15.44), we know that the commutator acting on the fermion field transforms
as

[Dµ, Dν ]ψ(x)→ g(x) [Dµ, Dν ]ψ(x), (15.54)

which results in the gauge transformation for the commutator

[Dµ, Dν ]→ g(x) [Dµ, Dν ] g
†(x) . (15.55)

Then, using (15.48), we obtain the gauge transformation for the matrix Fµν :

Fµν → g(x)Fµν g
†(x) . (15.56)

We can use this information to guess the form of the gauge invariant kinetic term. From
(15.56), we see that Fµν is not gauge invariant, unlike what happens in the abelian case.
Then, although

FµνF
µν → g(x)FµνF

µν g†(x) , (15.57)

is not gauge invariant, its trace actually is. Then, we have

Tr[FµνF
µν ] = F a

µν F
bµν Tr[tatb]

(15.58)

= F a
µν F

bµν δ
ab

2
,

so the form of the kinetic term that corresponds to the abelian normalization is
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−1

2
Tr[Fµν Fµν ] = −1

4
Fa
µν Faµν . (15.59)

Although at first the form of the gauge kinetic term above looks just like a simple sum of
the kinetic terms of the individual gauge bosons (for a = 1, . . . , N2− 1), this is deceiving.
When plugging in the explicit form of F a

µν from (15.52) we see that (15.59) not only leads
to terms quadratic in the derivatives of each of the fields, but also to interactions among
the gauge fields: there will be a triple interaction and a quartic one. This is a crucial
feature of non abelian gauge theories: the gauge bosons interact with each other, whereas
this is not the case for the gauge bosons of the abelian U(1), e.g. the photons. This
will have very important consequences, from the behavior of scattering amplitudes to the
renormalization group flow.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
15.

• Quantum Field Theory , by M. Srednicki, Chapter 69.


