
Lecture 14

Lie Algebras and Non Abelian
Symmetries

Non abelian gauge theories are based on non abelian continuous groups. These are defined
by the fact that they include elements that can be continuously deformed into the identity.
For them then we have that

g ∈ G/ (14.1)

the we can write

g(α) = 1 + iαata +O(α2) , (14.2)

where the αa’s are infinitesimally small real parameters, summation over the index a is
understood and the ta are called the generators of the group G. The definition (14.2)
implies

g(0) = 1 . (14.3)

If g(α) is unitary then the ta must be a set of linearly independent hermitian operators.
Groups defined by these properties are called Lie groups.

In order to obtain the defining property of Lie groups (its algebra) we start by defining
the group’s multiplication. The multiplication of two elements of the group results in
another element of G:

g(α) g(β) = g(ξ) , (14.4)

where the real paramenters of the product element satisfy
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ξa = f(αa, βa) , (14.5)

with f a continuously differentiable function of the αa’s and the βa’s. We can conclude
various things about f . For instance,

f(αa, 0) = αa , (14.6)

and similarly for α = 0. On the other hand, if in (14.4) we have that

g(β) = g−1(α) , (14.7)

then it must be that

f(α, β) = 0 . (14.8)

Armed with this knowledge we are going to compute the following quadruple multiplica-
tion:

g(α) g(β) g−1(α) g−1(β) = g(ξ) . (14.9)

We will first focus on the left hand side of (14.9). This is given by

(1 + iαata + · · · ) (1 + iβbtb + · · · ) (1− iαctc + · · · ) (1− iβdtd + · · · ) , (14.10)

from which we can see that the terms linear in α and β cancel. Multiplying the first order
parameters and keeping only up to second order products we have

1− αaβbtatb + αaαctatc + αaβdtatd + βdαctbtc + βbβdtbtd − αcβdtctd + · · · , (14.11)

where the dots include the second order terms in the expansions of the g’s and they
will also contain second order products of α’s and β’s which are not explicitly written in
(14.11). In fact, it is easy to see that the third and sixth terms in (14.11) actually are
cancelled by them. Then the left hand side of (14.9) up to leading order in the infinitesimal
paramenters α and β is given by

1 + βbαc [tb, tc] + · · · , (14.12)



3

where [tb, tc] = tbtc − tctb is the commutator of the generators.

Now let us consider the right hand side of (14.9). We know that

ξ = f(α, β) . (14.13)

Then the most general expansion of ξ in terms of α and β is given by

ξe = Ae +Befαf + B̃efβf + Cefgαfβg + C̃efgαfαg + Ĉefgβfβg + · · · , (14.14)

where Ae, Bef , B̃ef , Cefg, C̃efg and Ĉefg are arbitrary real coefficients, and the dots
correspond to terms with more than two infinitesimal parameters. However, since using
(14.3), (14.7) and (14.8) we know that the function in (14.13) satisfies

f(α, 0) = f(0, β) = 0 , (14.15)

we immediately conclude that

Ae = Bef = B̃ef = C̃efg = Ĉefg = 0 . (14.16)

Then we conclude that

ξe = Cefg αfβg + · · · , (14.17)

and therefore

g(ξ) = 1 + iξete + · · ·
(14.18)

= 1 + iCefg αf βg te + · · · . (14.19)

We can now equate this with our result for the left hand side (14.12). We then conclude
that the commutator of the generators must satisfy

[tb, tc] = i Cbce te . (14.20)

The expression above is the defining property of the group G and is called the algebra
of the group. The set of constants Cbce are called structure constants and vary from one
group to another.
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Finally, the structure constants in (14.20) satisfy an identity that is derived from the
following cyclic property of commutators:

[ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = 0 . (14.21)

Using (14.20) and the equation above we arrive at

CadeCbcd + CbdeCcad + CcdeCabd = 0 , (14.22)

which is the Jacobi identity for the structure constants.

14.1 Classification of Lie Algebras

For the applications we are manly interested in here, we focus on unitary transformations
on a finite number of fields. These can be represented by a finite number of hermitian
operators. When the number of of generators is finite we say that the group is compact.
If one of the generators commutes with all others, then it generates a U(1) subgroup. If
the algebra does not contain such a U(1) factor is called semi-simple. Furthermore, if it
does not contain at least two sets of generators whose members commute with the ones
from the other set, then the algebra is called simple. The most general Lie algebra can
be expressed as a direct sum of simple algebras plust U(1) abelian factors.

The restriction that the algebra be compact and simple results in the three so called
classical groups, plus five exceptional groups. Here we will not talk about the exceptional
groups (G2, F4, E6, E7 and E8) although some of them have found applications, for
instance in attempts to build model of the unification of all fundamental interactions. In
fact we will mostly concentrate on SU(N), which is relevant in many applications such as,
for instance, the description of gauge theories in the standard model of particle physics.
The other classical groups, SO(N) and Sp(N) have been also used in many applications.

SU(N): Unitary transformations of N -dimensional vectors.

If u and v are N -dimensional vectors, a linear transformation on them defined by

u→ U u , v → U v , (14.23)

is a unitary transformation if it preserves the product

u† v . (14.24)

This is satisfied if
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U † = U−1 . (14.25)

These transformations defined in this way also include the multiplication by an overall
phase:

u→ eiα u . (14.26)

But the transformation above corresponds to an example of a U(1) factor. If we want our
algebra to be simple, we should remove it. We do this by requiring that

detU = 1 . (14.27)

This requirement removes the phase transformation in (14.26) since we have

U = eiH , (14.28)

where H must be hermitian due to (14.25). The unit determinant constraint (14.27)
means that

Tr [H] = 0 , (14.29)

excluding the U(1) transformation in (14.26). Without this exclusion we would have
U(N) = SU(N) × U(1). The generetors of SU(N) are represented by N2 − 1 N × N
traceless matrices. Of these, N − 1 are diagonal, which define the rank of the group.
As mentioned earlier, SU(N) gauged groups figure prominently in the standard model
of particle physics, where the interactions are described by the gauge group SU(3) ×
SU(2)× U(1), where the first factor refers to strong interactions and the last two to the
electroweak ones.

SO(N): Orthogonal transformations on N -dimensional vectors.

It is defined as the unitary transformations that preserve the scalar product of any two
N dimensional vectors

u · v = ua δab vb . (14.30)

This is just the group of rotations in N dimensions, but we need to exclude the reflection
so that (14.27) is satisfied. Otherwise we would have O(N), which is not a simple group.
The number of generators is
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N(N − 1)

2
, (14.31)

which is the number of independent angles in N dimensions.

SO(N) gauge theories have been used in extensions of the standard model, such as for
example SO(10) grand unification models. The are also often used as spontaneously
broken global symmetries in models where the Higgs boson is composite.

Sp(N): Symplectic transformations on N -dimensional vectors.

These transformations preserve the anti-symmetric product of N dimensional vectors

u · v = ua εab vb , (14.32)

with

ε =

(
0 1
−1 0

)
. (14.33)

The groups has

N(N + 1)

2
, (14.34)

generators, that means that it is represented by this number of N ×N unitary matrices.

14.2 Representations

A representation is a realization of the multiplication of group elements by using matrices.
That is

a b = c → M(a)M(b) = M(c) , (14.35)

where M(a), M(b) and M(c) are matrices. A representation is said to be reducible if it
can be written in diagonal block form, that is as

M(a) =

 M1(a) 0 0
0 M2(a) 0
0 0 M3(a)

 . (14.36)
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A reducible representation is the direct sum of irreducible representations (irreps).

The dimension of representation r, d(r), is the dimension of the vector space in which
the matrices M(a) act. Irreps can be used to have matrices representing the generators
of the group, ta. We denote these matrices as tar . To fix their normalization we define the
trace of the product as

Tr[ta
r tb

r ] ≡ Dab , (14.37)

which satisfies Dab > 0 if the tar are hermitian. We can always choose a basis for the
matrices tar such that

Dab ∝ δab , (14.38)

meaning that

Tr[ta
r tb

r ] = C(r) δab , (14.39)

with C(r) a constant that depends on the particular representation r.

Expressing the generators by the tar , we may write the algebra of the Lie group as

[tar , t
b
r] = i fabc tcr , (14.40)

where the fabc are the structure constants (which we called Cabc before). Making use of
(14.39) and (14.40) we can write the structure constants as

fabc =
−i
C(r)

Tr[[ta
r , t

b
r ] tc

r] . (14.41)

Expanding the commutator and the trace it is straightforward to show that (14.41) implies
that fabc is totally anti-symmetric under the exchange of the group indices a, b and c.

Complex Conjugate Representation

For each irrep r we can define a complex conjugate representation r̄. For instance, if we
have a field φ undergoing an infinitesimal transformation we write

φ→ (1 + iαa tar)φ . (14.42)

Then, the complex conjugate of the field transforms as
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φ∗ → (1− iαa (tar)
∗)φ∗ . (14.43)

Then, the generators of the complex conjugate representation are defined as

tar̄ = −(tar)
∗ = −(ta)T , (14.44)

where the last equality is a consequence of tar being hermitian. There are cases when the
complex conjugate representation r̄ is equivalent with r. This is the case if a unitary
transformation U exists such that

tar̄ = U tar U
† . (14.45)

Then we say that the representation r is real.

Adjoint Representation

The generators of the adjoint representation G are defined by the structure constants fabc

by

(
tbG
)
ac
≡ i fabc . (14.46)

It is straightforward to verify that they satisfy the algebra, that is that

[tbG, t
c
G]ae = if bcd

(
tdG
)
ae
, (14.47)

which is in fact the Jacobi identity (14.22). Since the structure constants fabc are real,
we can see that the generators of the adjoint representation satisfy

taG = −(taG)∗ , (14.48)

which means that he adjoint representation is real. The dimension of the adjoint rep-
resentations, d(G) is given by the number of generators of the group, e.g. N2 − 1 for
SU(N), etc.

Casimir Operator

The operator defined by

T 2 ≡ ta ta , (14.49)
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is called the Casimir operator and it has the property that it commutes with all the
generators of the group. That is,

[T 2, ta] = 0 . (14.50)

The most well known example is the operator for the total angular momentum squared,
J2, which commutes with all the components of ~J . In a given irrep r the Casimir is given
by a constant:

tar t
a
r = C2(r)1 , (14.51)

where 1 is the identity in d(r) × d(r) dimensions. Here we defined C2(r), the quadratic
Casimir operator of the representation r. For the particular case of the adjoint represen-
tation, we have

(tc)ad (tc)bd = facd f bcd = C2(G) δab . (14.52)

For a given representation r it is possible to relate the Casimir C2(r) with C(r). To see
this we start from (14.39). We have that if we multiply it by δab on each side we arrive at

δab Tr[ta
r tb

r ] = C(r) δab δab (14.53)

The product of the two deltas in the right hand side above gives the number of generators,
which we can write as d(G), the dimension of the adjoint representation G. But inserting
the facor of δab on the right hand side of (14.53) inside the trace, we obtain the trace of
(14.51). Noticing that Tr[1] = d(r) we arrive at the useful relation

d(r)C2(r) = d(G)C(r) . (14.54)

We are now ready to tackle gauge symmetries based on non abelian groups.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
15.

• Gauge Theory of Elementary Particle Physics, T.-P. Cheng and L.-F. Li, Chapter
4.


