
Lecture 13

Spontaneous Breaking of a Local
Symmetry

We have seen that the spontaneous breaking of a continuous symmetry results in the
presence of massless states in the spectrum, the Nambu–Goldstone Bosons (NGB). We
have seen this in particular for a U(1) global symmetry where the potential was such that
the ground state was not U(1) invariant. In that case, the NGB corresponded to the
degeneracy of the ground state, i.e. it was the fluctuation going around the degenerate
minimum and as such it corresponded to a massless state. We will see later that this
picuture generalizes for non-abelian global continuous symmetries so that the number of
NGBs corresponds to the number of degenerate directions in group space, i.e. the number
of broken generators.

Before we go into non-abelian symmetries, we will consider the situation when the
U(1) symmetry studied earlier is gauged. That is, is a local U(1) symmetry such as
for example in QED. As we will soon see, the consequences for the spectrum when the
spontaneously broken symmetry is gauged are drastic. We start with the lagrangian of a
scalar field charged under a gauged U(1) symmetry just as QED. This is given by

L =
1

2
(Dµφ)∗Dµφ− V (φ∗φ)− 1

4
FµνF

µν , (13.1)

where the covariant derivative is defined by

Dµφ = (∂µ + ieAµ)φ , (13.2)

and the scalar and gauge field transformations under the U(1) gauge symmetry are

1
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φ(x) → eiα(x)φ(x)

(13.3)

Aµ(x) → Aµ(x)− 1

e
∂µα(x) .

Finally, the gauge field Aµ(x) has a kinetic term given by the square of the gauge invariant
field strength as usual

Fµν = ∂µAν − ∂νAµ . (13.4)

With (13.2), (13.3) and (13.4) the lagrangian in (13.1) is clearly gauge invariant.

In order to implement spontaneous breaking we choose the potential as

V (φ∗φ) =
1

2
µ2φ∗φ+

λ

4
(φ∗φ)2 , (13.5)

which is the same form we used for the breaking fo the global U(1) and corresponds to the
only renormalizable terms allowed by the symmetry in four spacetime dimensions. What
follows next pertaining the minimum of the potential is identical to what we saw for the
global symmetry case. If µ2 > 0 the minimum of V in (13.5) is φ = 0. However if µ2 < 0
then we rewrite the potential as

V (φ∗φ) = −1

2
m2φ∗φ+

λ

4
(φ∗φ)2 , (13.6)

where we have defined the positive constant m2 = −µ2. As before, in this case the
minimum is now given by the solution of

−1

2
m2 +

λ

2
(φ∗φ)0 = 0 , (13.7)

which results in

(φ∗φ)0 = 〈0|φ∗φ|0〉 =
m2

λ
≡ v2 . (13.8)

Choosing the value of the field to be real at the minimum, we use the expansion

φ(x) = v + η(x) + iξ(x) , (13.9)
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such that the physical real fields satisfy

〈0|η(x)|0〉 = 〈0|ξ(x)|0〉 = 0 . (13.10)

Just as we expect, writing the potential in terms of η(x) and ξ(x)

V (φ∗φ) = V ((v2 + η(x)2) + ξ(x)2) , (13.11)

allows us to identify the spectrum which is given by

mη =
√

2m =
√

2λv

(13.12)

mξ = 0 .

Thus, we identify ξ(x) with the massless NGB. The difference with respect to the SSB of
a global U(1) comes in when we look at what happens in the scalar kinetic term. This is

1

2
(Dµφ)∗Dµφ =

1

2
∂µη∂

µη +
1

2
∂µξ∂

µξ +
1

2
e2 v2AµA

µ

(13.13)

+ e v Aµ ∂
µξ + · · · ,

where we have explicitly written the terms quadratic in the fields, and the dots denote
interactions terms that are cubic or quadratic in them. Besides the kinetic terms for η(x)
and ξ(x) we notice two terms. The first one is an apparent gauge boson mass term. It
implies that the gauge boson has acquired a mass given by

mA = e v . (13.14)

However, this does not mean that the gauge symmetry is not been respected. In fact,
all we have done with respect to the (13.1 ) is to expand the theory around the ground
state in terms of fields that have zero expectation values there. In other words, we just
performed a change of variables. However, the fact the we are expanding the theory
around a minimum that does not respect the symmetry is resulting in a mass for the
gauge boson. This means that the gauge symmetry has been spontaneously broken. But
since we have not added any terms that violated explicitly the U(1) gauge symmetry, the
symmetry has not been explicitly broken and therefore currents and charges must still be
conserved. We will go into this poin in more detail later.
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Figure 13.1: Feynman rule for the non-diagonal contribution to the two-point function in
(13.13).

The second notable aspect in (13.13) is the term mixing the gauge boson with the ξ(x)
field, the would-be NGB. Having a term like this, i.e. non-diagonal two-point function,
implies that we have to include a Feynman diagram as the one in Figure 13.1. Although
in principle there is no problem with having a non-diagonal Feynman rule such as this
as long as we always remember to include it, it is interesting to see how to diagonalize
it and what are the consequences of doing that. The idea is to choose a gauge for Aµ(x)
such that we can cancel this term once we go to the new gauge. The theory has to be
physically equivalent to the one with (13.13). Choosing a specific gauge corresponds to
choosing a scalar function α(x) in the gauge tranformations (13.3). In particular, if we
choose

α(x) = −1

v
ξ(x) , (13.15)

we then have the gauge transformation

Aµ(x)→ A′µ(x) = Aµ(x) +
1

ev
ξ(x) . (13.16)

Replacing Aµ(x) in terms of A′µ(x) and ξ(x) in (13.13) we have

1

2
(Dµφ)∗Dµφ =

1

2
∂µη∂

µη +
1

2
∂µξ∂

µξ +
1

2
e2 v2

(
A′µ −

1

ev
∂µξ

)(
A′µ − 1

ev
∂µξ

)
(13.17)

+ e v

(
A′µ −

1

ev
∂µξ

)
∂µξ + · · · , ,

Carefully collecting all the terms in (13.17) we arrive at the surprisingly simple expression
for the scalar kinetic term:

1

2
(Dµφ)∗Dµφ =

1

2
∂µη∂

µη +
1

2
e2 v2A′µA

′µ + · · · . (13.18)

We see that the gauge boson mass term is still the same as before. However, the ξ(x) field,
the massless field that we thought would be the NGB is now gone. Its kinetic term is gone
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and, as we will see later, no term with ξ(x) remains in the lagrangian after this gauge
transformation. So the would-be NGB is not! When a degree of freedom disappears from
the theory just by performing a gauge transformation, we say that this is not a physical
degree of freedom. This particular gauge without the NGB ξ(x) is called the unitary
gauge, since it exposes the actual degrees of freedom of the theory: a real scalar field
η(x) with mass mη =

√
2m and a gauge boson with mass mA = ev. In fact if we count

degrees of freedom before and after we expanded around the non-trivial ground state, we
see that before we had two real scalar fields, and two degrees of freedom corresponding
to the two helicities of a massless gauge boson, for a total of four degrees of freedom.
But after we expanded around the ground state, we have one real scalar field, plus three
polarizations for the now massive gauge boson, again a total of four degrees of freedom.
It is in this sense that sometimes we say that when a gauge symmetry is spontaneously
broken, the NGB is “eaten” by the gauge boson to become its longitudinal polarization.
This statement can be made more precise through the equivalence theorem, which says
that in processes at energies much larger than v (so that it does not matter that the
expectation value of the field is not zero in the ground state) computing any observable
by using the theory with a massive gauge boson should yield the same result as using the
theory with a massless gauge boson and a massless NGB, up to corrections that go like
v2/E2, where E is the characteristic energy scale of the process in question. We will come
back to the equivalence theorem later on when we consider the spontaneous breaking of
non-abelian gauge symmetries.

There is another, perhaps more direct, way to see that the NGB can be gauged away, i.e.
it disappears from the theory by performing a gauge transformation. For this purpose, it
is advantageous to parametrize the scalar field not in terms of real and imaginary parts,
but of modulus and phase. We write

φ(x) = eiπ(x)/f (v + σ(x)) , (13.19)

where we see that this automatically satisfies (13.8). We have two real scalar fields, just
as before. One is the modulus field σ(x) and the other one is the phase field π(x). The
scale f is defined so that the argument of the exponent is dimensionless. To fix f we
demand that the π(x) field has a canonically normalized kinetic term, i.e. we impose it
be

1

2
∂µπ∂

µπ . (13.20)

This fixes

f = v , (13.21)

so that we have
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φ(x) = eiπ(x)/v (v + σ(x)) , (13.22)

instead of (13.9). From the form above, it is immediately clear that π(x) will not appear
in the potential. In fact, this is given by

V (φ∗φ) = −m
2

2
[v + σ(x)]2 +

λ

4
[v + σ(x)]4 . (13.23)

From this form above we see that σ(x) is the massive real scalar field with

mσ =
√

2λ v , (13.24)

just as before. This also means that π(x) cannot get a mass, i.e.

mπ = 0 , (13.25)

and therefore is the NGB. In fact, it will only appear in the lagrangian in derivative form
since it is the only way it will come down from the exponentials before these annihilate
in the kinetic scalar term.

From the parametrization (13.22) it is also obvious how to remove π(x) by means of a
gauge transformation. Clearly, choosing the gauge transformation

φ(x)→ φ′(x) = e−iπ(x)/v φ(x) , (13.26)

results in

φ′(x) = [v + σ(x)] . (13.27)

Of course, the gauge transformation (13.26) is the same we introduced earlier in (13.15)
only substituting π(x) for ξ(x), and it therefore results in the same transformation for the
gauge fields as in (13.16). Therefore, our conclusions are exactly the same as the ones we
derived by using (13.9) as the field expansion: there is a massive gauge boson field with
mass mA = e v and a massive reals scalar with mass given by (13.24).

We finally comment on the meaning of spontaneously breaking a gauge symmetry. Specif-
ically, we want to address the point that although the gauge boson has acquired a mass,
the gauge symmetry is still present. To show this, let us go back to the gauge where we
have both the gauge boson and the NGB. We want to compute the gauge boson two-
point function at tree level. In particular we want to consider the effect of spontaneous
symmetry breaking. We will need to use the Feynman rule illustrated in Figure 13.1.
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Figure 13.2: New contributions to the gauge boson two-point function at tree level in the
presence of spontaneous symmetry breaking. The first diagram is the gauge boson mass
term insertion. The second one corresponds to the massless NGB contribution.

The calculation is illustrated in Figure 13.2. In addition to the tree-level gauge boson
propagator, there are two new terms contributing: the gauge boson mass insertion and
the massless NGB pole. They are

iδΠµν = im2
Agµν +mAqµ

i

q2
mA(−qν)

(13.28)

= im2
A

(
gµν −

qµqν
q2

)
.

In the first line in (13.28) we used the gauge boson–NGB mixing Feynman rule of Fig-
ure 13.1. The result is that the new additions to the two-point function result to be
actually transverse. That is, we have that

qµδΠµν = 0 , (13.29)

so that the two-point function remains transverse, therefore respecting the Ward identities.
Since the Ward identities are equivalent to current conservation, we conclude that the
gauge symmetry is still preserved, even in the presence of the gauge boson mass term.
We can see that this required the presence of the NGB pole. Just having the gauge
boson mass term would have resulted in a non-transverse contribution to the two-point
function, and an explicit violation of the gauge symmetry. So having a gauge boson mass
is compatible with gauge invariance as long as it is the result of spontaneous symmetry
breaking.
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Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
20.1.

• Quantum Field Theory , by M. Srednicki, Chapter 85.

• Quantum Field Theory in a Nutshell, by A. Zee. Chapter 4.6.


