
Lecture 11

The Effective Action

So far, in our treatment of the spontaneous breaking of a continuous symmetry, when
we considered the the minimization of the potential of the field in question to obtain
its ground state expectation value, we were working at the classical level. Quantum
corrections will renormalize the parameters of the theory, including those of the potential.
In fact, they can also add new field dependent terms and potentially change the position
of the minimum of the potential. In order to include quantum corrections we will define
a function in the full quantum theory such that its minimum is actually

〈0|φ(x)|0〉 , (11.1)

where we define |0〉 as the state with no quanta of the field φ(x). To leading order,
this function should coincide with the classical potential. We start with the generating
functional in the presence of a linearly coupled source J(x) given by

Z[J ] = eiW [J ] =

∫
Dφ eiS[φ]+i

∫
d4xJ(x)φ(x) . (11.2)

We can then write

δW

δJ(x)
= −i δ lnZ

δJ(x)
=

∫
Dφφ(x) eiS[φ]+i

∫
d4xJ(x)φ(x)∫

Dφ eiS[φ]+i
∫
d4xJ(x)φ(x)

, (11.3)

which means that

δW

δJ(x)
= 〈0|φ(x)|0〉 ≡ φc(x) , (11.4)
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gives the expectation value of the operator φ(x). We now define the effective action as a
functional of φc(x) as

Γ[φc(x)] ≡ W [J ]−
∫
d4xJ(x)φc(x) . (11.5)

From the definition above, we see that Γ[φc(x)] is the Legendre transform of W [J ], with
J(x) and φc(x) conjugate Legendre variables. We can then compute

δΓ[φc]

δφc(x)
=

∫
d4y

δW [J ]

δJ(y)

δJ(y)

δφc(x)
−
∫
d4y

δJ(y)

δφc(x)
φc(y)−

∫
d4yJ(y)δ(4)(x− y) , (11.6)

where in the last terms we used the defining property of the functional derivative. Using
(11.4), we see that the first two terms in (11.6) cancel leaving us with

δΓ[φc]

δφc(x)
= −J(x) . (11.7)

In particular, in the absence of the external source (i.e. for J(x)→ 0) we have

δΓ[φc]

δφc(x)
= 0 . (11.8)

If we further assume that the solution of (11.8) is translationally invariant, then φc is a
constant. Then, the effective action can be written as

Γ(φc) = −
∫
d4xVeff.(φc) = −V T Veff.(φc) , (11.9)

where in the last equality we considered finite space-time box of volume V T . Then, (11.7)
becomes

∂Veff.

∂φc
= J(x) , (11.10)

which in the J → 0 limit turns into

∂Veff.

∂φc
= 0 . (11.11)
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The equation above says that the vacuum expectation value

φc = 〈0|φ(x)|0〉 , (11.12)

is the solution that minimizes the effective potentail Veff.. This formalizes what we had
been saying before on a more sure footing. It also opens up the possibility of computing
the contributions of quantum corrections.

11.1 Computing the Effective Action

In order to compute the effects of quantum corrections in the effective action, we first
have to obtain the mean field or saddle point solution about which we will expand. Going
back to the generating functional

Z[j] = eiS[φ]+i
∫
d4x J(x)φ(x) , (11.13)

the saddle point configurations are solutions to

δ{S[φ] +
∫
d4x J(x)φ(x)}
δφ

= 0 . (11.14)

As a typical example, let us consider a real scalar field with

S[φ] =

∫
d4x

{
1

2
∂µφ∂

µφ− V (φ)

}
=

∫
d4x

{
−1

2
φ ∂2φ− V (φ) +

1

2
∂µ (φ∂µ)

}
, (11.15)

from which we see that

δS[φ]

δφ(x)
= −

(
∂2φ(x) + V ′(φ)

)
, (11.16)

where we defined

V ′(φ) ≡ δV [φ]

δφ(x)
. (11.17)



4 LECTURE 11. THE EFFECTIVE ACTION

Then, the saddle point equation (11.14) becomes

∂2φ(x) + V ′(φ) = J(x) . (11.18)

Calling the solutions of the saddle point equation (11.18) φs(x), we will now expand
around them. We then write

φ(x) = φs(x) + η(x) . (11.19)

where we defined the fluctuation η(x) around the saddle point solution φs(x). Thus, to
expand the functional integral around the fixed saddle point solution, we must integrate
over η(x), i.e.

Dφ→ Dη . (11.20)

To prepare the functional integral we expand the action as

S[φ] =
1

2
∂µφs∂

µφs +
1

2
∂µη∂

µη + ∂µφs∂
µη − V (φs + η) , (11.21)

where the potential can be expanded as

V (φs + η) ' V (φs) + η
∂V

∂φ

)
φs

+
1

2
η2 ∂2V

∂φ2

)
φs

+ · · · , (11.22)

It is straightforward to verify that the linear terms in η in (11.21) will be cancelled once
the saddle point condition (11.14) is imposed. Then, for small fluctuations η(x) we can
write the generating fuctional as

Z[J ] = eiS[φs]+i
∫
d4xJ(x)φs(x)

∫
Dη ei

∫
d4x{(1/2)∂µη∂µη−(1/2)η2V ′′(φs)} . (11.23)

The functional integral in η in (11.23) is Gaussian so we perform it, resulting in

Z[J ] = eiS[φs]+i
∫
d4xJ(x)φs(x) [detO]−1/2 . (11.24)

where we defined the operator

O ≡ ∂2 + V ′′(φs) . (11.25)
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Using that

detO = eTr lnO , (11.26)

we arrive at

W [J ] = S[φs] +

∫
d4y J(y)φs(y) +

i

2
Tr ln

(
∂2 + V′′(φs)

)
. (11.27)

The last term in (11.27) encodes the quantum corrections coming from integrating out
the fluctuations η(x). In fact, if we compute the functional derivative of (11.27)

δW [J ]

δJ
= φs(x) +

δ
[
S[φs] +

∫
d4yJ(y)φs(y)

]
δφs

δφs
δJ

+ quantum corrections , (11.28)

where the second term vanished due to the saddle point condition (11.14). Then, using
(11.4) we obtain

φc(x) = φs(x) + quantum corrections . (11.29)

Thus, we conclude that the vacuum expectation value of the field, φc(x) is in fact the
saddle point solution plus quantum corrections. We are now in a position to see how
these corrections enter in the effective action.

Using the definition of the effective action in (11.5) and the exression (11.27) we arrive at

Γ[φs] = S[φs] +
i

2
Tr ln

(
∂2 + V′′(φs)

)
, (11.30)

which tells us that the effective action is an expansion around the saddle point action
that includes the quantum fluctuations.

In order to go further in the computation, we need to make some assumptions that will
allow us to treat the trace in (11.30). If we assume that the vacuum solution φs(x) is a
constant, then V ′′(φs) is also a constant. Then the trace can be written as

Tr ln
(
∂2 + V′′(φ)

)
=

∫
d4x〈x| ln

(
∂2 + V ′′(φ)

)
|x〉

(11.31)

=

∫
d4x

∫
d4p

∫
d4k 〈x|p〉 〈p| ln

(
∂2 + V ′′(φ)

)
|k〉 〈k|x〉 ,
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where we have inserted the identity twice as integrals over the momenta k and p, and we
dropped the subscript s in the field. The action of the log operator on a momentum state
is

ln
(
∂2 + V ′′(φ)

)
|k〉 = ln

(
−k2 + V ′′(φ)

)
|k〉 (11.32)

where the right-hand side is the eigenvalue times the state, plus using that 〈p|k〉 =
δ(4)(p− k), we obtain

Tr ln
(
∂2 + V′′(φ)

)
=

∫
d4x

∫
d4k

(2π)4
ln
(
−k2 + V′′(φ)

)
, (11.33)

where we have used the normalization of the space-time wave-function given by

|〈x|k〉|2 =
1

(2π)4
. (11.34)

Since φ is a constant, it is more relevant to compute the effective potential as defined in
(11.9). We have

Veff.(φ) = V (φ)− i

2

∫
d4k

(2π)4
ln

(
−k2 + V ′′(φ)

−k2

)
, (11.35)

where we inserted a φ-independent term in order to have a dimensionless argument for
the logarithm. This is the Coleman-Weinberg potential. It includes the first quantum
corrections for the potential energy of the background (constant) field φ. We will see
below that this can be also obtained by a loop expansion, corresponding to the one loop
effective potential. But before going into that, we will perform the momentum integral.
As we will see below, it is divergent, which means that we need to define counterterms and
impose renormalization conditions in order to obtain the renormalized effective potential.

11.2 Renormalization of the Effective Potential

The integral in (11.35) results in two divergencies: a quadratic and a logarithmic one. We
include two counterterms as in

Veff.(φ) = V (φ)− i

2

∫
d4k

(2π)4
ln

(
−k2 + V ′′(φ)

−k2

)
+ δµ2φ2 + δλφ4 , (11.36)

Performing a Wick rotation we have
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Veff.(φ) = V (φ) +
1

2

∫ Λ dkEdΩ

(2π)4
k3
E ln

(
1 +

V ′′(φ)

k2
E

)
+ δµ2φ2 + δλφ4

(11.37)

= V (φ) +
2πd/2

(2π)dΓ(d/2)

∫ Λ

dk2
E k

2
E

[
V ′′(φ)

k2
E

− 1

2

(
V ′′(φ)

k2
E

)2

+ . . .

]
+ δµ2φ2 + δλφ4 ,

where we expanded the logartithm keeping only the UV-divergent terms. To perform the
integrals in (11.37) we need to be careful with the IR limit since there is a logarithm. The
lowest energy scale is V ′′(φ), so we obtain

Veff.(φ) = V (φ) +
Λ2

32π2
V ′′(φ)− 1

64π2
(V ′′(φ))

2
ln

(
Λ2

V ′′(φ)

)
+δµ2φ2 + δλφ4 . (11.38)

We see that if V (φ) is a quartic polinomial in φ, then V ′′(φ) is quadratic, and (V ′′(φ))2

is quartic, resulting in divergences matched by the counterterms we wrote to begin with.
On the other hand, if V (φ) contains higher powers of φ, we will require additional coun-
terterms, resulting in non-renormalizable terms. E.g. if V (φ) goes like φ6, then V ′′(φ) is
quartic already, and (V ′′(φ))2 goes as φ8, requiring new higher dimensonal counterterms.

As an example, let us consider

V (φ) =
λ

4!
φ4 , (11.39)

which means that we choose m = 0. Then we have

Veff.(φ) =
λ

4!
φ4 +

Λ2

64π2
λφ2 − λ2

256π2
φ4 ln

(
Λ2

λφ2/2

)
(11.40)

+δµ2φ2 + δλφ4 .

To fix the counterterms we impose the following renormalization conditions. First, since
m = 0 we impose

d2Veff.(φ)

dφ2
|φ=0 = 0 , (11.41)
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resulting in

δµ2 = −λ Λ2

64π2
. (11.42)

For the quartic counterterm, we cannot impose the renormalization condition at φ = 0
because, once again, we have a logarithm. We then choose φ = µ, an arbitrary nonzero
scale. Then we impose

d4Veff.(φ)

dφ4
|φ=µ = λ(µ) . (11.43)

which results in

δλ =
λ2

256π2

(
ln

(
Λ2

µ2

)
− 25

6

)
. (11.44)

Replacing in Veff.(φ) we arrive at

Veff.(φ) =
λ

4!
φ4 +

λ2

256π2

(
ln

(
φ2

µ2

)
− 25

6

)
φ4 , (11.45)

where it is understood that λ = λ(µ) at a given order. We see from the expression above
that the quantum corrections to the effective potential are not just shifts of the coupling
constant λ, but there is a new φ-dependent term in the form of logarithm, giving the
potential a different shape that the mere φ4 it had a lowest level.

The fact that quantum corrections modify the shape of the potential posses the ques-
tion of whether we can have spontaneous symmetry breaking triggered just from them.
In the example above, imposing

∂Veff.

∂φ
= 0 ,

results in the condition

λ ln

(
φ2

0

µ2

)
= −32π2

3
+O(λ) , (11.46)

where φ0 is the value of the field at the minimum. However, the expression in (11.46)
appears incompatible with perturbation theory. This does not mean that spontaneous
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symmetry breaking cannot be triggerd by quamtum corrections. But we will need to
include at least one more parameter, for instance a nonzero value for m. Then, it is
possible to start with a theory with a minimum at φ = 0 at tree level, but that it
acquires a nonzero ground state expectation value φ0 due to quantum corrections. This
mechanism is widely used, for instance, in theories trying to explain the origin of the
scalar (Higgs) sector of the standard model of particle physics, where it is referred to as
radiative spontaneous symmetry breaking.

Additional suggested readings

• Aspects of Symmetry, S. Coleman, Chapter 5.3.

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
11.

• Quantum Field Theory in a Nutshell, by A. Zee. Chapter 4.3.

• Gauge Theory of Elementary Particle Physics, T.-P. Cheng and L.-F. Li, Section
6.4.


