
Lecture 10

Spontaneous Symmetry Breaking II:
Superconductivity

We have seen in a second quantization exercise that the interactions of electrons and
phonons can lead to an effective attractive interaction between electrons in a material, as
long as the energies of the participating electrons are close to the Fermi surface. By close
we mean within ±ωD, with ωD the Debye energy which is the maximum frequency for
phonons. We can express this as an effective attractive electron potential given by

Veff.(q) ' g

ω2 − ω2
q

, (10.1)

where g is a positive constant and ωq < ωD. Under the right circumstances, this attractive
interactions will lead to the formation of Cooper pairs, which in a superconductor will
dominate the ground state. In what follows we will consider a phenomenological model of
this interaction that was first proposed by Bardeen, Cooper and Schrieffer (BCS). Just as
for the case of the superfluid, we first consider the second quantization formulation and
then we go on to the functional integral treatment.

10.1 Superconductivity in Second Quantization

The approximation proposed in the BCS formulation involves assuming that the inter-
action takes place (predominantly) among electrons of the same energy and opposite
momentum. This is a good approximation since the energy difference needs to be smaller
than ωD, which is much smaller than the typical electron energy. The BCS Hamiltonian
is then given by

H =
∑
p,σ

εp c
†
pσcpσ − g

∑
p,k

c†k↑c
†
−k↓c−p↓cp↑ , (10.2)

1
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where cpσ and c†pσ are fermion annihilation and creation operators, and g is a positive
constant. The opposite spins in the interaction term are a reflection of the fact that it is
supposed to come from integrating out a scalar field (phonons) interacting with electrons.
To solve the Hamiltonian in (10.2) we consider a coherent state |ΨBCS〉 where the zero-
momentum mode is macroscopically occupied when Cooper pairs (pairs of electrons with
opposite spins) condense to form a superconducting ground state. We define an operator
that creates Cooper pairs out of the non-interacting ground state |0〉 as

P †p ≡ c†p↑c
†
−p↓ , (10.3)

which we then use to build the BCS coherent state

|ΨBCS〉 =
∏
p

Ape
αpP

†
p |0〉 , (10.4)

where Ap and αp are complex coefficients. First, we notice that Pp and P †p obey the
commutation rules

[Pp, Pp] = 0, [P †p, P
†
p] = 0, , (10.5)

which might tempt us to claim that Cooper pairs are just bosons. However,

[Pp, P
†
q] = δpq (1−Np↑ −N−p↓) , (10.6)

with Npσ = c†pσcpσ, shows that their properties as not the usual ones for bosons. In
particular, it is straightforward to show that (exercise)

P †pP
†
p = 0 , (10.7)

which betrays the fermionic character of the Cooper pair constituents. Using this property
the coherent BCS state (10.4) can be rewritten as

|ΨBCS〉 =
∏
p

Ap

(
1 + αpP

†
p

)
|0〉 . (10.8)

Furthermore, if we impose the normalization to be unity, we can determine the Ap’s. This
is
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〈ΨBCS|ΨBCS〉 = 1

= |Ap|2〈0|
(
1 + α∗pPp

) (
1 + αpP

†
p

)
|0〉

= |Ap|2
(
1 + |αp|2〈0|PpP

†
p|0〉

)
. (10.9)

However, using (10.6), it is easy to see that

〈0|PpP
†
p|0〉 = 〈0|1−Np↑ −N−p↓|0〉 = 1 , (10.10)

which results in

Ap =
1√

1 + |αp|2
, (10.11)

where we ignored the irrelevant overall phase of the state |ΨBCS〉. Then, defining

up ≡
1√

1 + |αp|2
, vp ≡

αp√
1 + |αp|2

, (10.12)

the BCS ground state can be written as

|ΨBCS〉 =
∏
p

(
up + vpP

†
p

)
|0〉 . (10.13)

where the coefficients defined in (10.12) satisfy

|up|2 + |vp|2 = 1 . (10.14)

We can interpret the coefficients up and vp by noticing that

〈ΨBCS|Np↑|ΨBCS〉 =
∏
k,q

〈0| (u∗k + v∗kPk) c†p↑cp↑
(
uq + vqP

†
q

)
|0〉

=
∏
k

v∗kvp〈0|PkP
†
p|0〉 = |vp|2 , (10.15)

and similarly for Np↓. Then, noticing that
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N =
∑
p,σ

c†pσcpσ =
∑
p

(Np↑ +Np↓) , (10.16)

we obtain

〈ΨBCS|N |ΨBCS〉 = 2
∑
p

|vp|2 . (10.17)

Then, 2|vp|2 gives the number of occupied states with momentum p. Through (10.14) we
can see that |up|2 gives us the number of unoccupied states.

Next, we are interested in obtaining the ground state energy, i.e. using (10.2) we want to
compute

E = 〈ΨBCS|H|ΨBCS〉
= 2

∑
p

εp|vp|2 − g
∑
p,k

v∗pvku
∗
kup , (10.18)

where in the second line we used the properties of up and vp (check!), and the 2 in the
first term there comes from summing over spins. The expression above can be used to
obtain the ground state energy. The solution must minimize the energy subject to the
constraints

N = 2
∑
p

|vp|2

|up|2 + |vp|2 = 1 . (10.19)

Then, the function to be extremized is

f ≡ E − µN +
∑
p

Ep

(
|up|2 + |vp|2 − 1

)
, (10.20)

where µ and Ep are the Lagrange multipliers. We need to solve

∂f

∂up
=

∂E

∂up
− µ ∂N

∂up
+ Epu

∗
p = 0

(10.21)

∂f

∂vp
=

∂E

∂vp
− µ∂N

∂vp
+ Epv

∗
p = 0 .
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Defining

∆ ≡ g
∑
p

u∗pvp , (10.22)

the minimization equations (10.21) can be written in matrix form as

 (εp − µ) ∆

∆̄ −(εp − µ)

  u∗p

v∗p

 = Ep

 u∗p

v∗p

 , (10.23)

which has eigenvalues

Ep = ±
√

(εp − µ)2 + |∆|2 . (10.24)

Obtaining the eigenvectors (i.e. the solution for u∗p and v∗p ) can be made easier by
rewriting (10.23) as

 cos 2θp sin 2θp

sin 2θp − cos 2θp

  u∗p

v∗p

 =

 u∗p

v∗p

 , (10.25)

where we defined

cos 2θp ≡
εp − µ
Ep

, sin 2θp ≡
∆

Ep

. (10.26)

The solution for the eigenvectors of (10.25) results in

u∗p = cos θp, v∗p = sin θp . (10.27)

Also worth noticing, we now have

u∗pvp = cos θp sin θp =
1

2
sin 2θp =

∆

2Ep

. (10.28)

This results in the transcendental equation
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∆ = g
∑
p

u∗pvp = g
∑
p

∆

2Ep

. (10.29)

Then, the energy gap ∆ must satisfy

1 = g
∑
p

1

2
√

(εp − µ)2 + ∆2
. (10.30)

This is the so-called the gap equation. Before we go on exploring it, we can now write
the BCS ground state as

|ΨBCS〉 =
∏
p

(
cos θp + sin θpc

†
p↑c
†
−p↓

)
|0〉 . (10.31)

Now examining (10.30), we must remember that in order for the Cooper pairs to form
the electron-electron interaction must be attractive, which means that

|εp − µ| < ωD . (10.32)

Then, in replacing the sum in (10.30) by an integral we will have

∑
p

→
∫ ωD

−ωD

ν(ε)dε , (10.33)

where ν(ε) is the density of states. But since the integration will be in a small band
around the Fermi surface, we will make the approximation

ν(ε) ' νF = constant . (10.34)

Then the gap equation (10.30) can be written as

1 = gνF

∫ ωD

−ωD

dε
1

2
√
ε2 + ∆2

, (10.35)

where we defined ε = εp − µ. Since the integrand in (10.35) is even we arrive at
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1

gνF
=

∫ ωD

0

dε
1√

ε2 + ∆2

(10.36)

= arcsinh
[ωD

∆

]
.

Then we arrive at

∆ =
2ωD

e1/gνF − e−1/gνF
. (10.37)

For instance, for gνF � 1 we have that the gap obeys

∆ ' 2ωDe
−1/g νF , (10.38)

which results in ∆� ωD as expected. We will later see that there is a crucial temperature
dependence of the energy gap. But for now we see that essentially at zero temperature,
or rather for T � Tc, the ground state has an energy gap ∆ given by (10.37). The
excitation spectrum has energies Ep. The next question is: what are the exited states, or
quasi-particles. One way to see this is the consider the Hamiltonian written as

H − µN =
∑
σ

(εp − µ)c†pσcpσ − g
∑
p,k

(
〈c†p↑c

†
−p↓〉c−k↓ck↑ + c†p↑c

†
−p↓〈c−k↓ck↑〉

)
, (10.39)

where we averaged over pairs of operators in the interaction term. The expectation values
in (10.39) are taken with respect to the BCS ground state, |ΨBCS〉. Explicitly, we have

g〈ΨBCS|cp↑c−p↓|ΨBCS〉 = ∆ , (10.40)

where we used that

∆ = g
∑
p

u∗pvp . (10.41)

Then, we can write (10.39) as

H − µN =
∑
σ

(εp − µ)c†pσcpσ −
∑
p

(
∆̄ c−p↓cp↑ + ∆ c†p↑c

†
−p↓

)
. (10.42)
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The expression above can be written in matrix form as

H − µN =
∑
p

(
c†p↑ c−p↓

) εp − µ −∆

−∆̄ −(εp − µ)

 cp↑

c†−p↓

 . (10.43)

The diagonalization of this Hamiltonian now can proceed through Bogoliuvov’s transfor-
mations defining the annihilation and creation operators of the eigenstates, bpσ and b†pσ,
and satisfying the usual anticommutation relations

{
bpσ, b

†
p′σ′

}
= δpp′δσσ′ , . . . (10.44)

In terms of them, we can rewrite (10.43) as

H − µN =
∑
p

(
b†p↑ b−p↓

) Ep 0

0 −Ep

 bp↑

b†−p↓

 . (10.45)

where Ep is given by (10.24). Then, we arrive at

H − µN =
∑
p,σ

Ep b
†
pσbpσ . (10.46)

The states created and annihilated by b†pσ and bpσ are excitations, as can be seen by the
fact that

bpσ|ΨBCS〉 = 0 , (10.47)

meaning that the BCS ground state contains none of them.

In Figure 10.1 we show the excitation energy as a function of εp − µ, where we can see
that there is a gap defined by ∆ where there can be no excitations.

Finally, we comment on the fact that the non-trivial expectation value of the Cooper pair
operator Pp given by (10.40) implies spontaneous symmetry breaking in a form analogous
to the case of a superfluid, since in general ∆ has a phase, which we here chose to be a
constant equal to zero. However, unlike the case of a superfluid, here the phase is a local
function, i.e. θ(x), with x = (x0,x) a spacetime point. The corresponding symmetry
is a local U(1) corresponding to the gauge symmetry of electromagnetism. A gauge
transformation is given by the local shift
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Ep

p

Figure 10.1: Dispersion for the excitations in a superconductor. They must have at least
an energy ∆ in order to occur,

θ(x)→ θ(x) + α(x) . (10.48)

As we will see later, this gauge freedom will allow us to get rid of the phase field θ(x).
The price will be to give mass to the photon inside the superconductor. This is called the
Anderson-Higgs mechanism, and it translates into the screening of the electric field which
leads to zero resistivity, as well as to the expulsion of magnetic field in what is known as
the Meissner effect. But before we get into this, we will reformulate superconductivity
through the functional integral and show that we will understand the gap ∆ better by
deriving its temperature dependence.

10.2 Superconductivity in the Functional Integral

We will start by writing the BCS Hamiltonian (10.2) in position space. Turning on the
electromagnetic field, we have

H − µN =

∫
ddr c†σ(r)

[
1

2m

(
−i~5− eA

)2

+ eφ− µ
]
cσ(r)

(10.49)

− g

∫
ddr c†↑(r)c

†
↓(r)c↓(r)c↑(r) ,

where the field operators cσ(r) are the usual Fourier transforms of the momentum space
operators cpσ, and φ and A are the scalar and vector potentials respectively. We can then
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write the partition function as a functional integral in the coherent state representation,
as usual. This takes the form

Z =

∫
D(ψ̄, ψ)e−S[ψ̄,ψ] , (10.50)

with the action given by

S[ψ̄, ψ] =

∫ β

0

dτ

∫
ddr

[
ψ̄σ

(
∂τ + ieφ+

1

2m

(
−i~5− eA

)2
)
ψσ − gψ̄↑ψ̄↓ψ↓ψ↑

]
,

(10.51)

where it is understood that ψσ = ψσ(τ,x), and that they satisfy anti-periodic boundary
conditions

ψσ(0,x) = −ψσ(β,x) , (10.52)

given that these come from fermion fields. In going from the Hamiltonian in (10.49) to
(10.51), we notice that the scalar potential term picks up a factor of i. This comes from
the imaginary time τ formulation of the functional integral and can be understood from
the fact that φ transform as the time component of a four-vector: Aµ = (φ,A). The
action (10.51) is invariant under the local transformations


ψσ → eiθ(τ,x)ψσ , ψ̄σ → e−iθ(τ,x)ψ̄σ

φ→ φ− 1
e
∂τθ(τ,x) , A→ A + 1

e
~5θ(τ,x)

(10.53)

The next step is to use a Hubbard-Stratonovich transformation to decouple the quartic
interaction in the action (10.51). In particular, we will do this in the Cooper channel,
that is we will introduce the complex scalar field ∆ so that it couples to Cooper pairs as

∆ψ̄↑ψ̄↓ , (10.54)

as well as its complex conjugate ∆̄, coupled as

∆̄ψ↓ψ↑ . (10.55)

This means that we will replace the quartic interaction in (10.51) by integrating in ∆
using
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eg
∫
dτddrψ̄↑ψ̄↓ψ↓ψ↑ =

∫
D(∆, ∆̄)e−

∫
dτddr{(1/g)‖∆|2−(∆̄ψ↓ψ↑+∆ψ̄↓ψ̄↑)} , (10.56)

where the field ∆ is a boson and therefore satisfies periodic boundary conditions:

∆(0,x) = +∆(β,x) . (10.57)

Then, we can replace the quartic interaction term in (10.51) in favor of a purely quadratic
(in terms of the fermion fields) scalar-fermion interaction. Before we rewrite the action
in this form, we will define a notation that will simplify the expressions. We define the
so-called Nambu spinors as

Ψ̄ ≡
(
ψ̄↑ ψ↓

)
, Ψ ≡

 ψ↑

ψ̄↓

 , (10.58)

which is analogous to what we did with cpσ in the second quantization formulation earlier.
Then the partition function can be written as

Z =

∫
D(ψ, ψ̄)D(∆, ∆̄)e−

∫
dτddr{(1/g)|∆|2−Ψ̄O−1Ψ} , (10.59)

where we defined the operator

O−1 ≡


(
G

(p)
0

)−1

∆

∆̄
(
G

(h)
0

)−1

 , (10.60)

and we also defined

(
G

(p)
0

)−1

≡ −
(
∂τ + ieφ+

1

2m

(
−i~5− eA

)2

− µ
)
, (10.61)

and

(
G

(h)
0

)−1

≡ −
(
∂τ − ieφ−

1

2m

(
i~5− eA

)2

+ µ

)
. (10.62)
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This form can be checked by using the anti-commuting rules for ψσ and ψ̄σ, as well as
integration by parts in ∂τ and ~5. Since the action in the exponent in (10.59) is quadratic
in the fermion fields, we can integrate them out, resulting in

Z =

∫
D(∆, ∆̄)e−(1/g)

∫
dτddr |∆|2+Tr ln[O−1] , (10.63)

Then, the effective action for the ∆ fields is

S[∆, ∆̄] =
1

g

∫
dτddr ∆̄∆− Tr ln

[
O−1

]
, (10.64)

Next, we will proceed as usually. First we obtain the mean field solution, and then
consider fluctuations.

Mean Field Theory:

We are after the saddle point solution for ∆(τ,x), i.e. the solution of

δS[∆, ∆̄]

δ∆
= 0 . (10.65)

We will assume that the mean field solution is a constant in τ and x, i.e. ∆(τ,x) = ∆0.
Thus, the mean field equation (10.65) becomes

1

g
∆̄0 = Tr

[
O δO−1

δ∆

]
∆=∆0

, (10.66)

Where O is the inverse of O−1. Ignoring the electromagnetic fields for now, and using
(10.60), we have

δO−1

δ∆
=

 0 1

0 0

 . (10.67)

The operator O is given by

O =
1

detO−1

 −∂τ − 52

2m
− µ −∆

−∆̄ −∂τ + 52

2m
+ µ

 . (10.68)
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Since we need to compute the trace, it is convenient to go to the Matsubara and momen-
tum representations. Defining

ξp =
p2

2m
− µ , (10.69)

we can rewrite (10.60) as

O−1 =
1

βLd

 iωn − ξp ∆0

∆̄0 iωn + ξp

 , (10.70)

with ωn the Matsubara frequencies. The determinant in (10.68) can then be written as

detO−1 = − 1

βLd

∑
n,p

(
|∆0|2 + ω2

n + ξ2
p

)
. (10.71)

The mean field equation (10.65) then becomes

1

g
∆̄0 −

1

βLd

∑
n,p

∆̄0

ω2
n + ξ2

p + |∆0|2
. (10.72)

We then arrive to the so-called gap equation in the mean field approximation

1

g
=

T

Ld

∑
n,p

1

ω2
n + ξ2

p + |∆0|2
. (10.73)

The Matsubara sum can be performed, resulting in

1

g
=

1

Ld

∑
p

1− 2nF (λp)

2λp
, (10.74)

where we defined 1

λ2
p ≡ ξ2

p + |∆0|2 , (10.75)

and

1Notice that λp coincides with the eigenvalues Ep we defined above up to the fact that now we take
temperature effects into account.
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nF (ε) =
1

eβ(ε−µ) + 1
, (10.76)

is the Fermi-Dirac distribution. We want to turn the sum over p into an integral. For this,
we need to remember that the BCS interaction will be attractive as long as |ξp| < ωD,
that is within a small slice of 2ωD around the Fermi surface. Then (10.74) can be written
as

1

g
=

∫ ωD

−ωD

dξ
1

Ld

∑
p

δ(ξ − ξp)
1− 2nF (λ(ξ))

2λ(ξ)
. (10.77)

We can identify the density of states in this integral as

ν(ξ) =
1

Ld

∑
p

δ(ξ − ξp) , (10.78)

and use the fact that

1− 2nF (ε) = tanh (ε/2T ) , (10.79)

to obtain

1

g
=

∫ ωD

−ωD

dξ ν(ξ)
tanh

(
λ(ξ)
2T

)
2λ(ξ)

. (10.80)

Given that the energy range being integrated is very narrow and close to the Fermi surface
we make the approximation that in the integral (10.80)

ν(ξ) ' νF , (10.81)

with νF the density of states at the Fermi surface. Then we can write

1

g νF
=

∫ ωD

0

dξ
tanh

(
λ(ξ)
2T

)
2λ(ξ)

, (10.82)

where we used that the integrand now is even in ξ. This is the gap equation in the mean
field approximation. Notice that to recover our previous result from (10.36) we need to
take the T � ∆0 limit, for which we have tanh(λ(ξ)/2T ) ' 1 resulting in
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0(0)

(T)0

T / Tc

1

1

Figure 10.2: Behavior of the gap order parameter ∆0 as a function of temperature.

1

g νF
' arcsinh

(
ωD
∆0

)
, (10.83)

as before. But now (10.82) gives us the correct temperature dependence for the order
parameter ∆0. In particular we are interested in the behavior close to the critical tem-
perature, T ∼< Tc. By expanding (10.82) around this point we can obtain (exercise) that

∆0(T ) ' const.
√
Tc(Tc − T ) , (10.84)

which is illustrated in Figure 10.2. This behavior of the order parameter with temperature
has been experimentally confirmed in the so-called s-wave superconductors in a variety of
materials.

Below, we will consider an expansion around small values of ∆0, i.e. not far from the
critical temperature. This will allow us to study fluctuations around the mean field
solution close to the phase transition.

Landau-Ginzburg Expansion:

Close to the phase transition for T ∼< Tc we have that

∆(T )

∆(0)
� 1 , (10.85)

where we dropped the subscript 0 for simplicity. Thus, we expand around ∆ = 0, the
symmetric phase (since ∆ 6= 0 spontaneously breaks the U(1) gauge symmetry). To
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prepare this expansion it is convenient to rewrite (10.60) as

O−1 ≡


(
G

(p)
0

)−1

0

0
(
G

(h)
0

)−1

+

 0 ∆

∆̄ 0

 , (10.86)

which defines the operator in the symmetric phase through

O−1 = O−1
0 + ∆̂ , (10.87)

with ∆̂ the second term in (10.86). Then the trace in (10.64) is

Tr ln
[
O−1

]
= Tr ln

[
O−1

0

(
1 +O∆̂

)]
= Tr ln

[
O−1

0

]
+ Tr

[
O0∆̂

]
− 1

2
Tr

[(
O0∆̂

)2
]

+ . . . , (10.88)

In the last line of (10.88), the first term does not depend on ∆, so it will only generate
an irrelevant overall factor in the functional integral, while the second term vanishes on
inspection. Then we can approximate the trace by

Tr ln
[
O−1

]
= −1

2
Tr

[(
O0∆̂

)2
]

+ . . .

= −Tr
[
O011O022∆∆̄

]
+ . . . , (10.89)

When going to the momentum/Matsubara representation we can write

Tr ln
[
O−1

]
=

1

βLd

∑
q

∑
p

G0pG0−p+q∆(q)∆̄(q) , (10.90)

where Gop is the momentum/Matsubara representation free two-point function. This
results in the action

S[∆, ∆̄] =
∑
q

(
1

g
− T

Ld

∑
p

G0pG0−p+q

)
|∆(q)|2 . (10.91)
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If we now consider the q → 0 component, i.e. the constant order parameter, we see that
there is the possibility of a sign change. In fact the quadratic action is unstable below a
critical temperature. We must then consider higher dimensional terms in order to stabilize
it. The first one corresponds to extend the expansion in (10.88) to quartic order. Writing
the resulting action back in space and time coordinates we have

S[∆, ∆̄] =

∫
dτddr

{
r(T )|∆|2 + λ|∆|4 +O(∂τ∆, ∂∆, |∆|6)

}
, (10.92)

where we know that

r(T ) ∼ T − Tc , (10.93)

would change sign for temperatures below Tc and result in a non-zero value for the order
paramenter ∆ in the ground state. In the action above we neglected derivatives and
higher dimensional terms of ∆. However, in here we must consider the presence of the
electromagnetic field through derivatives. This will result in the Landau-Ginzburg theory
for a superconductor. The spontaneous breaking of the U(1) symmetry will result in a
massive photon inside the superconductor. We will discuss these issues further below in
the context of relativistic theories, but we will come back to superconductivity and the
effects associated with the Anderson-Higgs mechanism, namely the Meissner effect and
the existence of supercurrents.

Additional suggested readings

• Condensed Matter Field Theory, Altland and Simons, Section 6.4.

• Quantum Theory of Many Particle Systems, A. L. Fetter and J. D. Walecka, Chapter
14.


