
Lecture 1

The Renormalization Group

We saw that the renormalization procedure results in renormalized parameters acquiring a
momentum dependence. In particular, we saw that the electric charge, the QED coupling,
becomes a function of the momentum transfer squared, q2. This was a consequence of
computing the vacuum polarization of the photon

Π̂(q2) = Π(q2)− Π(0) , (1.1)

where Π̂(q2) is finite. The divergence in Π(0) is absorbed by the coupling at q2 = 0 as

e2 ≡ e0

1− Π(0)
, (1.2)

where e0 is the unrenormalized coupling. Thus, we obtained the q2-dependent coupling

e2(q2) =
e2

1− Π̂(q2)
, (1.3)

where the finite part of the vacuum polarization was computed to be

Π̂(q2) = −2α

π

∫ 1

0

dx x(1− x) ln

(
m2

m2 − x(1− x)q2

)
, (1.4)

with α = e2/4π. In the limit −q2 � m2 we have

Π̂(q2) ' α

3π

{
ln

(
−q2

m2

)
− 5

3
+O

(
m2

−q2

) }
, (1.5)

resulting in

1
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e2(q2) =
e2

1− α
3π

ln
(
−q2

m2

)
+ 5

3

, (1.6)

once again, valid for −q2 � m2. In principle, we can choose arbitrary renormalization
conditions. For instance, we use q2 = µ2

R in order to obtain ( as long as µ2
R � m2)

e2(µ2
R) ' e2

(
1 +

α

3π
ln
µ2
R

m2
− 5

3

)
, (1.7)

with µ2
R is some arbitrary renormalization scale. Of course, we could have chosen some

other different scale µ
′2
R . However, the relation between the coupling evaluated in both

these scales is known

e2(µ
′2
R) = e2(µ2

R) +
e4

12π2
ln
µ

′2
R

µ2
R

, (1.8)

so that the functional dependence on the renormalization scale is a property of the inter-
action. We define the logarithmic derivative of the scale-dependent coupling as

β(e) ≡ ∂e

∂ lnµ
′
R

=
e3

12π2
+O(e5) , (1.9)

which is the QED one-loop beta function. It characterizes the dependence of the coupling
with the choice of renormalization scale. In particular, in the case of QED we see that
it is positive, meaning that the coupling growths with energy scale. This growth of the
coupling with energy is characteristic of all abelian gauge theories (or U(1) gauge theories)
and it can be understood in terms of charge screening by vacuum polarization. Consider
the schematic case of Figure 1.1: a positive charge at the center and a probe charge at a
given distance R. As R growths the screening due to vacuum polarization is larger and
the effective charge felt by q is smaller.

Conversely, as R is smaller (or q2 larger) the effective coupling growths. In the limit
of R → 0 the effective coupling diverges (i.e. e0 → ∞), and we see one more time
that a diverging parameter of the theory is associated with taking a distance to zero or
an energy/momentum to infinity. But the basic fact is that, as we move from small to
large scales, the effective coupling of the theory changes due to the effects of quantum
corrections. In the next section we explore this idea in a way pioneered by Kenneth
Wilson.
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Figure 1.1: Charge screening by vacuum polarization. As we move away from the positive
charge the effective coupling sensed by a probe q is smaller due to the effect of the
polarization of the vacuum.

1.1 Wilsonian Renormalization

The basic idea is very simple. We consider a quantum field theory and separate fields
according to their momenta. “High energy” fields will then be integrated out in the
functional integral, leaving us with a low energy effective theory for the “low energy”
fields. In order to implement this procedure we will formulate the theory in euclidean
d-dimensional space. To illustrate the effect of this Wick rotation from four-dimensional
Minkowski to euclidean space, let us consider a φ4 theory of a real scalar field, with the
action

S[φ] =

∫
d4x

{
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4

}
. (1.10)

Defining the Wick rotation by the euclidean coordinate x4 ≡ ix0, we make the replacement

dx0 = −idx4 , (1.11)

which results in d4x → −id4x, where the latter is the four-dimensional euclidean differ-
ential volume. The action (1.10) now reads

S[φ] = i

∫
d4x

{
1

2
∂µφ∂µφ+

1

2
m2φ2 +

λ

4!
φ4

}
≡ iSE[φ] , (1.12)

where in the first term both contracted indices are down to signal that this is just the
euclidean four-dimensional gradient squared, and we defined the euclidean action such
that the generating functional is given by
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Z =

∫
Dφ e−SE [φ] . (1.13)

This is not just the Wick-rotated euclidean action of the relativistic φ4 theory. It is also
the partition function of many condensed matter systems. In fact the euclidean action

SE[φ] =

∫
ddx

{
1

2
∂µφ∂µφ+

1

2
m2φ2 +

λ

4!
φ4

}
, (1.14)

is just the hamiltonian of a d-dimensional system, where now the kinetic term turned into
the energy associated with field gradients. This makes (1.13) the partition function of the
system. We will see later how to derive the proper partition function for statistical systems
using coherent states. But for now, we should know that (1.14) describes several condensed
matter systems within some approximation. For instance, this is the Ginzburg-Landau
action describing a d-dimensional superconductor, where φ is the order paramenter of the
phase transition (the energy gap). It is also a long range description of the d-dimensional
Ising model, which describes the interactions of spins in a magnetic system.

The Wilsonian formulation starts by considering an overall momentum cutoff for the field
φ. That is, we start from the generating functional

Z =

∫
[Dφ]Λ e−

∫
ddx{ 1

2
∂µφ∂µφ+ 1

2
m2φ2+ λ

4!
φ4} , (1.15)

where

[Dφ]Λ =
∏
|k|<Λ

dφ(k) , (1.16)

is the measure corresponding to the field modes with momenta below the cutoff Λ, i.e.
|k| < Λ. The cutoff is arbitrary, but at least we must assume that is much larger that any
dimensionfull parameter in the action. In this case this means Λ� m. Next, we separate
high and low energy modes by writing

φ(k) = φ`(k) + φh(k) , (1.17)

where we are using the momentum representation for the fields defined by the Fourier
transformation

φ(x) =

∫
ddk

(2π)d
e−ik·xφ(k). (1.18)
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Here we defined the high-momentum modes as

φh(k) =


φ(k) for |k| > bΛ

0 for |k| ≤ bΛ
(1.19)

whereas the low-momentum ones are defined as

φ`(k) =


φ(k) for |k| ≤ bΛ

0 for |k| > bΛ
(1.20)

where the dimensionless paramer b satisfies 0 < b < 1. We illustrate this scale separation
in Figure 1.2.

Figure 1.2: Separation of low and high energy modes, φ`(k) and φh(k). The separation is
made at the momentum bΛ, with 0 < b < 1.

The idea is to split the integration in (1.15) and integrate out the φh(k) high-energy modes
to obtain an effective theory for the low-energy modes φ`(k). The generating functional
in terms of the split fields is

Z =

∫
Dφ`

∫
Dφh e−

∫
ddx{ 1

2
(∂µφ`+∂µφh)2+ 1

2
m2(φ`+φh)2+ λ

4!
(φ`+φh)4} (1.21)

=

∫
Dφ` e−SE [φ`]

∫
Dφh e−

∫
ddx{ 1

2
(∂µφh)2+ 1

2
m2φ2

h+λ( 1
6
φ3
`φh+ 1

4
φ2
`φ

2
h+ 1

6
φ`φ

3
h+ 1

4!
φ4
h)} .

Here, SE[φ`] is the euclidean action (1.14) but for the low-energy modes only. In (1.21) we
used the fact that mixed terms that are linear in both φ` and φh, such as ∂µφ`∂µφh and
φ`φh, do not contribute to the action since the orthogonality conditions in momentum
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space apply to them and result in momentum delta functions that vanish (φ`(k) and
φh(k) cannot have the same momentum). On the other hand, non-linear mixed terms
such as the ones in the last term in (1.21) are not affected by this and give non-vanishing
contributions.

Integrating out φh in (1.21) will result in an effective action for φ`, i.e.

Z =

∫
Dφ` e−S

eff.
E [φ`] , (1.22)

where

Seff.
E [φ`] =

∫
ddx

{
1

2
∂µφ`∂µφ` +

1

2
m2φ2

` +
λ

4!
φ4
` +O(λ) corrections

}
, (1.23)

where the O(λ) corrections come from integrating out φh since the last term in the action
in (1.21) is the only one containing both φ` and φh (The quadratic terms in φh integrate
to a φ`-independent determinant which is absorbed as normalization).

1.2 Integrating Out High Energy Modes

In addition to considering the O(λ) terms as perturbations, we will also treat the mass
term as such, since as we pointed out earlier m2 � Λ2. Then, the leading order term
depending on the high-energy modes is

∫
ddx

1

2
∂µφh∂µφh =

1

2

∫
ddx

∫
ddk

(2π)d
ddk′

(2π)d
φh(k) (−ik) (−ik′)φh(k′)ei(k+k′)·x

=
1

2

∫
ddk

(2π)d
φh(k) k2 φh(−k) . (1.24)

From here we can obtain the momentum-space propagator by noticing that, up to nor-
malization, the free theory for φh is defined by

Z ∼
∫
Dφhe

−
∫

ddk

(2π)d
{ 1

2
φh(k)k2φh(−k)+J(k)φh(k)}

, (1.25)

where we included the Fourier transform of an external source J(x). Demanding that the
operator
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Ok =
k2

(2π)d
(1.26)

is the momentum-space inverse propagator, we have

DF (k + p) =
(2π)d

k2
δ(d)(k + p) . (1.27)

Now we are in a position to integrate out φh. We start with the term

−λ
4

∫
ddxφ2

`(x)φh(x)φh(x) , (1.28)

which we get from expanding the exponential to leading order in λ. Since the high-
momentum fields φh(x) are integrated out, they result in

∫
Dφhe

− 1
2

∫
ddk

(2π)d
{φh(k)k2φh(−k)}

φh(q)φh(p)→ DF (q + p) (1.29)

where the equality is obtained with the appropriate normalization. Then integrating out
φh results in contracting the two high-momentum fields in (1.27) into the momentum
propagator, which gives

−λ
4

∫ bΛ ddk1

(2π)d
φ(k1)φ(−k1)

∫ Λ

bΛ

ddk2

(2π)d
1

k2
2

(1.30)

Thus, if we define

µ ≡ λ

2

∫ Λ

bΛ

ddk2

(2π)d
1

k2
2

, (1.31)

we can interpret it as a shift on the mass m2 since it is equivalent to a term in the action
as

−µ
2

∫
ddxφ2

`(x) . (1.32)

The integral in (1.31) results in

µ = λ
1

(4π)dΓ(d/2)

(
1− bd−2

)
Λd−2

d− 2
, (1.33)
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which clearly shows the cutoff dependence of this mass shift. In terms of Feynman dia-
grams the interaction (1.28) is represented by the diagram of Figure 1.3, with the high-
momentum fields φh represented by the double lines.

Figure 1.3: The interaction (1.28) between two low-momentum and two high-momentum
fields. The latter are represented by double lines.

The mass shift defined by (1.31) is represented by the φh loop in Figure 1.4.

Figure 1.4: Mass shift from the integration of the high-momentum modes φh. The loop
integration on the left results in a counter-term µ, represented on the right.

So we can interpret the integral over the high-momentum modes as generating a mass
counter-term. From (1.33) we see that this is exactly what we obtain for d = 4 before: a
quadratic dependence on the cutoff. The same interaction (1.28) leads to a shift in the
φ4
` interaction at O(λ2), i.e. from the second term in the expansion of the exponential

(
−λ
4

)2 ∫
ddxφ2

`(x)φ2
h(x)

∫
ddy φ`(y)2φh(y)2 . (1.34)

This results in

− ξ
4!

∫
ddxφ`(x)4 , (1.35)

where we defined

ξ ≡ −4!

(
λ

4

)2 ∫ Λ

bΛ

ddk

(2π)d
1

(k2)2
. (1.36)
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Figure 1.5: Shift in the φ4
` interaction from the integration of the high-momentum modes

φh. The loop integration on the left results in a counter-term ξ, represented on the right.

Once again, the integral in (1.36) can be computed and gives

ξ = − 3λ2

(4π)d/2
1

Γ(d/2)

(1− bd−4)Λd−4

d− 4
. (1.37)

In addition to the shifts of coefficients already existing in the original action, integrating
out high-momentum modes also generates operators that were not there to begin with in
the classical theory. For instance, the φ3

`φh term in (1.21) will result in a φ6
` term once φh

is integrated out. This can be seen schematically in Figure 1.6.

Figure 1.6: Generation of the higher-dimensional operator φ6
` by integrating out φh.

From this last exercise it is clear that integrating out φh, weather at tree-level as in
Figure 1.6 or in loops, we can generate an infinite tower of higher-dimensional operators.
For instance, in d = 4 the φ6

` operator is non-renormalizable. This appears surprising
since we started with a renormalizable theory. We will address this point in detail in the
next couple of lectures. But already we can see that when deciding to write only a finite
set of operators in the action, say the ones that are renormalizable, we are neglecting
operators that in principle should be there. Infinitely many of them. However, as we will
see next, non-renormalizable operators are suppressed by the cutoff Λ. So it turns out
what we call a renormalizable theory, is one with a cutoff that is high enough, for instance
when compared with the typical energy of the process we are describing.
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Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
12.1.

• Field Theories of Condensed Matter Systems, E. Fradkin, Chapter 4.1.


