
Lecture 9

Functional Integral in Quantum
Field Theory

Here we will generalize a lot of the results obtained in the path integral formulation of
quantum mechanics for quantum field theory. In the case of quantum mechanics, our
dynamical variable, the one we integrated over, was x(t), so we were integrating over all
possible trajectories. In the case of quantum field theory our dynamical variable will be
the field (or fields) φ(x). So now we have

∫
Dφ(x) , (9.1)

symbolizing the sum over all possible field configurations φ(x).

Since, as we mentioned in the previous lecture, we will be interested in obtaining the
expectation values of operators in the ground state, we will go a more direct route this
time. We compute the amplitude to go from one ground state at an initial time ti to
another one at a time tf . Then, we can use the generating functional formalism in order
to obtain the desired correlation functions, i.e. the ground-state-expectation values of
time-ordered pruducts of fields.

The starting point is to consider an initial ground state field configuration, symbolized by
the state |0i〉 at time ti, and a final ground state configuration at time tf , |0f〉. We want
to compute the amplitude

〈0f |0i〉 = 〈0|e−iH(tf−ti)|0〉 . (9.2)

where now the hamiltonian is that of a real scalar field φ(x) given by

H =

∫
d3x

{
1

2
π̂2 +

1

2
(∇φ̂)2 +

1

2
m2φ̂2

}
+ . . .

=

∫
d3x

{
1

2
π̂2 + V [φ̂]

}
, (9.3)
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where we used hats to denote operators for the purpose of this derivation. In the first
line the dots denote a possible interaction term, and the second line we define the func-
tional V [φ̂] as the part of the hamiltonian density that does not depend on the conjugate
momentum density operator π̂.

Just as we did for quantum mechanics, we can imagine discretising the time interval
tf − ti = n × ∆t for infinitesimal ∆t, and inserting intermediate field configurations at
intermediate times that are eigenstates of the field operator φ, |φj〉, denoting a field
configuration φj(x) at time tj. So we have

φ̂(x, t)|φj(x)〉 = φj(x)|φj〉 . (9.4)

Each insertion of an itermediate field configuration corresponds to inserting the identitiy
as in ∫

dφj(x) |φj〉〈|φj| = 1 . (9.5)

Strictly speaking, the expression above is already a funcional integral since we are inte-
grating over all possible spatial field configurations φj(x) at the time tj. Thus, we are
actually discretizing spacetime altogether. However, for the prupose of our derivation we
will not need the spatial discretization.1 We then can write

〈0f |0i〉 =

∫
dφ1(x) . . . dφn(x)〈0|e−iH∆t|φn〉〈φn|e−iH∆t|φn−1〉〈φn−1| . . .

〈φj+1|e−iH∆t|φj〉 . . . |φ1〉〈φ1|e−iH∆t|0〉 , (9.6)

where now we can concentrate on computing each of the matrix elements between field
configurations separated by the infinitesimal time ∆t, analogously to what we did in
quantum mechanics. Then we want to compute

〈φj+1|e−iH∆t|φj〉 =

∫
dπj(x) 〈φj+1|πj〉〈πj|e−iH∆t|φj〉 , (9.7)

where we have used the insertion of the identity now in the form of a complete set of the
eigenstates of the conjugate momentum |πj〉, which are states of definitive value of the
conjugate momentum density operator π at time tj, i.e. we used∫

dπj(x) |πj〉〈πj| = 1 , (9.8)

with
π̂(x, t)|πj〉 = πj(x)|πj〉 . (9.9)

To compute the right hand side of (9.7) we need to remember that the fact that π is the
conjugate momentum density associated to the field φ means that

〈π|φ〉 = e−i
∫
d3xπ(x)φ(x) , (9.10)

1The discretization of the spatial coordinates can be seen as a first step in order to already obtain
expressions like that in (9.5).
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which is the projection of the state |φ〉 in conjugate momentum (density) space. Next,
to compute the factor 〈πj|e−iH∆t|φj〉 we need to act with the hamiltonian operator H on
the states |πj〉 and |φj〉. For this, we simply use (9.9) as well as that

V [φ̂] |φj〉 = V (φj(x)) |φj〉 . (9.11)

The result for (9.7) is

〈φj+1|e−iH∆t|φj〉 =

∫
dπj(x) e−i

∫
d3x [πj(x)φj(x)−πj(x)φj+1(x)] e−i

∫
d3x [π2

j (x)/2+V (φj(x))]∆t

=

∫
dπj(x) e

−i
∫
d3x∆t

{
π2
j (x)/2−πj(x)

φj+1(x)−φj(x)

∆t
+V (φj(x))

}
, (9.12)

where, in the first line, the first exponential just reflects the product 〈φj+1|πj〉〈πj|φj〉 ,
whereas the second exponential corresponds to the action of the hamiltonian on the states
|φj〉 and |πj〉. The second line in (9.12) can be rewritten to complete the square in πj
giving

〈φj+1|e−iH∆t|φj〉 = e
i∆t

∫
d3x

{
1
2

(φj+1(x)−φj(x))2

(∆t)2
−V (φj(x))

} ∫
dπj(x) e

−i∆t
∫
d3x 1

2

[
πj(x)−

(φj+1(x)−φj(x))

∆t

]2

= Nj e
i∆t

∫
d3xL[φj ,∂tφj ] . (9.13)

In the second line in (9.13) we performed the gaussian integral in πj resulting in a constant
factor Nj, and we defined the Lagrangian density already anticipating the ∆t→ 0 limit

L[φj, ∂tφj] =
1

2
(∂tφ)2 − V [φj] =

1

2
(∂tφ)2 − (∇φj)2 − 1

2
m2φ2

j + . . . , (9.14)

where the dots refer to possible interaction terms. Using (9.13) in (9.6) we then obtain

〈0f |0i〉 = N

∫
Dφ eiS[φ] , (9.15)

where we used∫
DφeiS[φ] = lim

n→∞,∆t→0

∫
dφ1(x) . . . dφn(x)

n∏
j=1

ei∆tL[φj ,∂tφj ] , (9.16)

and the action is defined as usual as

S[φ] =

∫
d4xL[φ, ∂µφ] . (9.17)

Since, in general, we will be taking ti → −∞ and tf → ∞, we will drop the time labels
to write

〈0|0〉 = N

∫
Dφ eiS[φ] , (9.18)

which says that, up to a normalization factor N , the functional integral over all the
possible field configurations is the so-called ground state (or vacuum) persistance. As we
will see below, the normalization will not be important in computing observables. The
building blocks to do this are the correlation functions we define below.
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9.1 Correlation Functions

We define the correlation functions (or n-point functions ) of a theory by

G(n)(x1, . . . xn) ≡ 〈0|T (φ(x1) . . . φ(xn))|0〉 . (9.19)

For instance, the 2-point function

G(2)(x1, x2) = 〈0|T (φ(x1)φ(x2))|0〉 , (9.20)

is the propagator or Green function of the theory. Following the derivation of (9.18) in
the previous section it is straightforward to see that2

G(n)(x1, . . . xn) = N

∫
Dφ(x) φ(x1) . . . φ(xn) eiS[(φ(x),∂µφ(x))] . (9.21)

So, if we assume that the vacuum persistence is unity, i.e. 〈0|0〉 = 1, then we obtain

G(n)(x1, . . . xn) =

∫
Dφ(x) φ(x1) . . . φ(xn) eiS[(φ(x),∂µφ(x))]∫

Dφ(x) eiS[(φ(x),∂µφ(x))]
. (9.22)

Then, the correlation functions, which are the observables of the theory, are defined in
terms of the path integrals. We will use them eventually to compute amplitudes for
processes of interest. For now we focus on defining them in a scheme that will allow us
to compute them, first in configuration space, and eventually in momentum space. We
will make use of the generating functional formalism, which will allow an intuitive way to
introduce the concept of perturbation theory in quantum field theory once we introduce
interactions.

9.2 Generating Functional in Quantum Field Theory

Before we define the generating functional of a quantum field theory, we will reestablish the
definition and some of the properties of functional derivatives in spacetime. Assuming
a source that depends on the spacetime position, i.e. J(x), we define the functional
derivative as

δJ(y)

δJ(x)
= δ(4)(x− y) , (9.23)

2For this is enough to notice that for each factor of φ(xj) corresponding to an intermediate time tj ,
we need the operator φ(x) acting on a state |φj〉.
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which is equivalent to

δ

δJ(x)

∫
d4y J(y)φ(y) = φ(x) . (9.24)

A useful example is the derivative of the exponential integral. It gives

δ

δJ(x)
ei
∫
d4y J(y)φ(y) = iφ(x) ei

∫
d4y J(y)φ(y) , (9.25)

which can be easily proven by expanding the exponential as

ei
∫
d4y J(y)φ(y) = 1+i

∫
d4y J(y)φ(y)+· · ·+(i)n

n!

∫
d4y1J(y1)φ(y1)· · ·

∫
d4ynJ(yn)φ(yn)+. . . ,

(9.26)

and using (9.24).

We are now ready to define the generating functional in the presence of an external source
J(x) linearly coupled to the field φ(x). In analogy with quantum mechanics we define

Z[J ] ≡ N

∫
Dφ ei

∫
d4x{L[φ,∂µφ]+J(x)φ(x)} . (9.27)

Then, to obtain the correlation functions we have

G(n)(x1, . . . , xn) = (−i)n 1

Z[0]

δn

δJ(x1) . . . δJ(xn)
Z[J ]

∣∣∣∣
J=0

(9.28)

in complete analogy what our result in quantum mechanics. We will work out some simple
examples to get a sense of the meaning of these definitions.

9.3 Example: Free Real Scalar Field

Let us consider a free real scalar field. The lagrangian density is

L =
1

2
∂µφ ∂µφ−

1

2
m2φ2 . (9.29)

Integrating by parts in the action we have
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∫
d4xL =

∫
d4x

(
−1

2

)
φ(x)

(
∂µ∂

µ +m2
)
φ(x) +

1

2

∫
d4x ∂µ(φ(x)∂µφ(x)) , (9.30)

where the last term is a total derivative and then it can be dropped. The differential
operator in the first integral can be defined as

Ox ≡ ∂2
x +m2 , (9.31)

where the subscript denotes derivation with respect to x. In this way, the generating
functional in the presence of a linearly coupled source J(x) can be written as

Z[J ] = N

∫
Dφ e−i

∫
d4x[ 1

2
φ(x)Ox φ(x)−J(x)φ(x)] . (9.32)

Just as for the case of quantum mechanics, we now want to shift the variable φ(x) in order
to separate the source J(x) from the variable of integration in the path integral. For this
purpose we define

φ′(x) ≡ φ(x)− i
∫
d4y DF (x− y) J(y) (9.33)

We will prove in what follows that this will do the job of decoupling the field from the
source J(x) as long as the following is satisfied

OxDF (x− y) = −iδ(4)(x− y) . (9.34)

That means that the decoupling will take place as long as the function DF (x− y) is the
Green function of the Klein-Gordon operator Ox. Replacing

φ(x) = φ′(x) + i

∫
d4y DF (x− y) J(y) (9.35)

in (9.32), we have for the exponent

−i
∫
d4x

{
1

2
φ′(x)Ox φ

′(x) +
1

2
φ′(x) J(x) +

i

2

∫
d4y DF (x− y) J(y)Ox φ

′(x) (9.36)

+
i

2

∫
d4yJ(x)DF (x− y) J(y)− J(x)φ′(x)− i

∫
d4yJ(x)DF (x− y) J(y)

}
.
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The third term can be integrated by parts twice such that, using (9.34), we have

i

2

∫
d4y DF (x− y) J(y)Ox φ

′(x) =
1

2
φ′(x) J(x) + surface terms . (9.37)

In this way, we arrive at the generating functional

Z[J ] = N

∫
Dφ e−i

∫
d4x{ 1

2
φ′(x)Oxφ′(x)− i

2

∫
d4y J(x)DF (x−y) J(y)} , (9.38)

We will assume that the transformation (9.33) leaves the measure of the path integral
invariant so that

∫
Dφ =

∫
Dφ′ . (9.39)

This will usually be the case. Whenever a field transformation does not leave the measure
of the field integral invariant we will be in the presence of an anomaly. We will consider
that situation in the second part of the course. For now, we will stick to theories where
(9.39) holds. Then the generating functional is now

Z[J ] = N

∫
Dφ′ ei

∫
d4xL[φ′] e−

1
2

∫
d4x d4yJ(x)DF (x−y) J(y) , (9.40)

which can be rewritten as

Z[J ] = Z[0] e−
1
2

∫
d4x d4y J(x)DF (x−y) J(y) . (9.41)

We see that, just as for the example of the harmonic oscillator in quantum mechanics, the
decoupling of the linear term resulted in a genereting functional where all the interesting
information comes from the Green function DF (x − y). As we will see below, all the
correlation functions will be determined by it. We are now in a position to use (9.28) to
obtain the n-point functions of the scalar theory.

Two-point Function:

We start with the two-point function of the real scalar field theory. By using (9.28) applied
on (9.41) we have
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G(2)(x1, x2) =
(−i)2

Z[0]

δ2

δJ(x1)δJ(x2)
Z[J ]

∣∣∣∣
J=0

(9.42)

= (−1)
δ

δJ(x1)

{
−1

2

∫
d4yDF (x2 − y) J(y)− 1

2

∫
d4xJ(x)DF (x− x2)

}∣∣∣∣
J=0

= (−1)

{
−1

2
DF (x2 − x1)− 1

2
DF (x1 − x2)

}
= DF (x1 − x2) .

So we arrive at

G(2)(x1, x2) = DF (x1 − x2) = 〈0|T (φ(x1)φ(x2))|0〉 . (9.43)

Of course, this confirms that the two-point function is the Feynman propagator. Inciden-
tally, all we asked for the function to do is for it to be a Green function of Ox, i.e. to
satisfy (9.34). It is straightforward to prove that DF (x− y) is given by

DF (x− y) =

∫
d4k

(2π)4
e−ik·(x−y) i

k2 −m2
. (9.44)

Four-point Function:

We can follow the same procedure to compute the four-point function

G(4)(x1, x2, x3, x4) = 〈0|T (φ(x1)φ(x2)φ(x3)φ(x4))|0〉 . (9.45)

The result is

G(4)(x1, x2, x3, x4) = DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4)

+DF (x1 − x4)DF (x2 − x3) . (9.46)

This can be represented diagrammatically, as we can seen in Figure 9.1. We can see that
the four-point function of the free theory is not very exciting. We can only have free
propagation joining the two pairs of points available in each possible pairing. We can also
see that the n-point function is zero for n odd. This is clear from the fact that when the
external sources are turned off (J → 0) all odd n correlation functions vanish. Then we
can generalize this for 2n-point functions defined as



9.4. INTEGRATING QUADRATIC FORMS 9

Figure 9.1: The three Feynman diagrams contributing to the four-point function of the
free real scalar field.

G(2n)(x1, . . . , x2n) =
∑

all pairings

DF (xi1 − xi2) . . . DF (x2n−1 − x2n) . (9.47)

So the 2n-point function is a sum over the products of n propagators paired in all possible
ways. This statement is called Wick Theorem.

9.4 Integrating Quadratic Forms

All throughout the course we will need to integrate quadratic forms. We will reduce
them to Gaussian integrals, which we know how to perform. Let us start from generating
functional for J = 0 in the free real scalar theory from the previous section.

Z[0] = N

∫
Dφ e−i

∫
d4xφ(x)Ox φ(x) , (9.48)

where absorb the factor of 1/2 in the definition of the operator. That is, we have

Ox =
1

2

(
∂2 +m2

)
. (9.49)

The point is to be able to write (9.48) above as a quadratic form in the fields.

In general, if the action can be written as

S =

∫
d4xφ(x)O φ(x) , (9.50)

where O is a differential operator that does not depend on φ (e.g. it could depend on
other fields), then the functional integral can be performed.
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To start, we expand the field φ(x) in terms of eigenfunctions of the operator O

φ(x) =
∑
n

an ϕn(x) , (9.51)

such that

O ϕn(x) = λn ϕn(x) , (9.52)

with the {λn} the eigenvalues. In addition, the eigenfunctions satisfy the orthonormality
conditions

∫
d4xϕn(x)ϕm(x) = δnm . (9.53)

We will typically try to compute integrals of the sort

I =

∫
Dφ e−i

∫
d4xφ(x)O φ(x) . (9.54)

Making use of (9.51) we have

I = N

(∏
n

∫ +∞

−∞
dan

)
e−i

∫
d4x

∑∞
k=1 ak ϕk(x)×

∑∞
`=1 λ` a` ϕ`(x) , (9.55)

where the integration over all possible field configurations is now the (infinite) product of
the integrals over all possible values of the expansion coefficients an. The normalization
N is irrelevant, as usual. If we now use the orthonormality condition (9.53) we obtain

I = N
∏
n

∫ +∞

−∞
dan e

−iλn a2
n = N

∏
n

√
π

iλn
(9.56)

This can be further simplified as

I = N ′
∏ 1√

λn
= N ′

√
1∏
n λn

, (9.57)

where we have absorbed some constants in N ′, a new normalization. Noticing that
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∞∏
n=1

λn = detO , (9.58)

i.e. the determinant of the differential operator O, we arrive at

I = N ′ (detO)−1/2 . (9.59)

The result in (9.59) is generic for any functional integral that is quadratic in bosonic
fields. The actual value of the determinant is not important in this case, but in general
it would be (e.g. in the presence of interactions). For the purposes we will use this result
it is useful to notice that we can write

detO = eTr lnO . (9.60)

To convince ourselves that this is correct, let us write

eTr lnO = e
∑
n lnλn =

∏
n

elnλn =
∏
n

λn = detO . (9.61)

The trace includes all indices and also all the possible values of the spacetime points, i.e.

Tr lnO =

∫
d4x 〈x| lnO|x〉 (9.62)

Exponentiation of the determinant will be of importance since we will be able to include
it effectively as a new term in the action. Performing the functional integral over a field
is referred to as having integrated out the field in question. As we will see later, this
procedure is very useful, particularly when the fields become too heavy in comparison
with the typical energy scale of the problem.

Additional suggested readings

• Quantum Field Theory , by M. Srednicki, Chapter 8.

• Quantum Field Theory in a Nutshell, by A. Zee. Chapter 1.7, first few sections on
free field theory.


