
Lecture 8

Generating Functional Method

Here we will introduce a so-called external source into the formalism. This is an artifact in
the calculation and for the purpose we will be using it here it has no physical significance.
The propagator in the presence of an external source j(t) is now 1

〈xf , tf |xi, ti〉j(t) ≡
∫
Dx(t) e

i

∫ tf

ti

dt (L(t) + j(t)x(t))
. (8.1)

Now the amplitude is a functional of the linearly coupled source j(t). We define the
functional derivative as the following operation

δj(t)

δj(t′)
= δ(t− t′) . (8.2)

This definition is suggested by

j(t) =

∫
dt′ δ(t− t′) j(t′) . (8.3)

As a result, we can write the matrix element of the time-ordered product of operators as

〈xf , tf |T (x(t1) . . .x(tn))|xi, ti〉 = (−i)n δn

δj(t1) . . . δj(tn)
〈xf , tf |xi, ti〉j(t)

∣∣∣∣
j(t)=0

. (8.4)

This should be obvious from (18.1), as for each functional derivative defined in (18.2) we

1From now one we restore h̄ = 1.
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2 LECTURE 8. GENERATING FUNCTIONAL METHOD

obtain one power of x(t) but evaluated at the time of the source with respect to which
we are deriving. That is

δ

δj(t1)
〈xf , tf |xi, ti〉j(t) =

∫
Dx(t) ix(t1) eiS[x(t)]+

∫
dtj(t)x(t) , (8.5)

so that

δ2

δj(t1)δj(t2)
〈xf , tf |xi, ti〉j(t)

∣∣∣∣
j=0

= (i)2

∫
Dx(t)x(t1)x(t2) eiS[x(t)] ,

= (i)2 〈xf , tf |T (x(t1)x(t2))|xi, ti〉 , (8.6)

8.1 Selecting the Ground State

In most of our applications we will need to compute the expectation value of the time-
ordered product of operators in the ground state (the “vacuum” in the case of quantum
field theory). The ground state wave-function is defined by

〈x, t|0〉 = ψ0(x) e−iE0t . (8.7)

In this way the desired matrix element can be written as

〈0|T (x(t1) . . .x(tn))|0〉 =

∫
〈0|xf , tf〉〈xf , tf |T (x(t1) . . .x(tn))|xi, ti〉〈xi, ti|0〉 dxf dxi , (8.8)

=

∫
eiE0(tf−ti) ψ∗0(xf )ψ0(xi) 〈xf , tf |T (x(t1) . . .x(tn))|xi, ti〉 dxf dxi .

However the above expression is not very useful as it involves the knowledge of all the
matrix elements over all the states including the vacuum. In order to select the ground
state matrix elements we will make use of a trick which called generically Wick rotation.
In this incarnation it involves the analytic continuation of the correlation functions to
imaginary time. We will use it later in field theory, in the energy instead of in the time
variable, but the idea is the same. We start with

〈xf , tf |xi, ti〉 =
∑
n

ψn(xf )ψ
∗
n(xi) e

−iEn(tf−ti) , (8.9)
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where we can see that if the energy had a small negative imaginary part, then when
(tf − ti) → +∞ the largest contribution comes from the ground state E0. We will use
this method later. Alternatively, we can consider analytically continuing the amplitude
to imaginary time in the following way:

tf → −iτf , ti → +iτi , (8.10)

where τf and τi are real and positive , so that the ground state is selected in the limit
(τf , τi)→∞

lim
(τf ,τi)→∞

〈xf , tf |xi, ti〉 ' ψ0(xf )ψ
∗
0(xi) e

−E0(τf+τi) . (8.11)

Similarly, we can write

lim
(τf ,τi)→∞

〈xf , tf |T (x(t1) . . .x(tn))|xi, ti〉 ' ψ0(xf )ψ
∗
0(xi) e

−E0(τf+τi) 〈0|T (x(t1) . . .x(tn))|0〉 ,

(8.12)

from which we can extract the ground state expectation value of the time-ordered product
of operators as

〈0|T (x(t1) . . .x(tn))|0〉 = lim
tf→−i∞,ti→+i∞

eiE0(tf−ti)

ψ0(xf )ψ∗0(xi)
〈xf , tf |T (x(t1) . . .x(tn))|xi, ti〉 .

(8.13)

This way of selecting the ground state will allow us to make use of the generating functional
method as we sketch as follows.

8.2 The Generating Functional

We define the generating functional in the presence of the source j(t) as

Z[j] ≡ lim
tf ,ti→∓i∞

〈xf , tf |xi, ti〉j(t) . (8.14)

Then its representation in terms of the path integral is

Z[j] = lim
tf ,ti→∓i∞

∫
Dx(t)ei

∫ tf
ti

dt(L(t)+x(t)j(t)) . (8.15)
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Since

Z[0] = lim
tf ,ti→∓i∞

〈xf , tf |xi, ti〉 = ψ0(xf )ψ
∗
0(xi)e

−E0(τf+τi) , (8.16)

we arrive, using (18.13), at

〈0|T (x(t1) . . .x(tn))|0〉 = (−i)n 1

Z[0]

δn

δj(t1) . . . δj(tn)
Z[j]

∣∣∣∣
j=0

. (8.17)

The above expression is the master formula to obtain the correlation functions of the
theory and it will have an analogous expression in the quantum field theory formulation.

The procedure defined above to select the ground state relies on using imaginary time and
the limits t→ ±i∞, wich amounts to using Euclidean four dimensional space. However,
in most applications we will need to work in Minkowski space, which requires we use real
time limits t → ±∞. To see that the results above derived in imaginary time still hold
we have to define an analytic continuation back to real time. We will do this below by
making use of a iε prescription that will pick up the correct singularities of the Green
functions. As we will see, the result will be equivalent to a rotation from imaginary to
real time.

8.3 Example: The Harmonic Oscillator

Before we start with the application of the path integral to quantum field theory it will
be very instructive to work out an example in some detail. In particular, the harmonic
oscillator in quantum mechanics is simple enough but contains many of the elements we
will be using later. We start with the action in the presence of an external source defined
by

Sj[x(t)] ≡
∫ +∞

−∞
dt

(
m

2
ẋ2(t)− mω2

2
x2(t) + x(t)j(t)

)
, (8.18)

where ω is the oscillator’s frequency and m the mass. It will be convenient to work on
the Fourier transformed variables. We then define x̃(E) by

x(t) =

∫ +∞

−∞

dE

2π
e−iEt x̃(E) , (8.19)

as well as the Fourier transform of the external source j(t) by
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j(t) =

∫ +∞

−∞

dE

2π
e−iEt ̃(E) . (8.20)

Baseed on these definitions we can now write the action (18.18) in the E variable. To do
this we must first compute

ẋ(t) =

∫ +∞

−∞

dE

2π
(−iE) e−iEt x̃(E) , (8.21)

which results in

∫ +∞

−∞
dt ẋ2(t) =

∫ +∞

−∞

dE

2π

∫ +∞

−∞

dE ′

2π
(−iE)(−iE ′)x̃(E)x̃(E ′)

∫ +∞

−∞
dte−i(E+E′)t . (8.22)

The last integral in the expression above results in a factor of 2πδ(E + E ′), which gives
us

∫ +∞

−∞
dt ẋ2(t) =

∫ +∞

−∞

dE

2π
(+E2) x̃(E) x̃(−E) . (8.23)

Following similar steps we obtain

∫ +∞

−∞
dt x2(t) =

∫ +∞

−∞

dE

2π
x̃(E) x̃(−E) . (8.24)

and

∫ +∞

−∞
dt x(t) j(t) =

∫ +∞

−∞

dE

2π
x̃(E) ̃(−E) =

∫ +∞

−∞

dE

2π
x̃(−E) ̃(E) . (8.25)

Replacing the expression above into the action (18.18) we have

Sj[x(t)] =

∫ +∞

−∞

dE

2π

(m
2

(E2 − ω2)x̃(E)x̃(−E) + x̃(E)̃(−E)
)
. (8.26)

Now we would like to make a change of our functional variable of integration in the path
integral, here x(t) or rather its Fourier transform x̃(E), such that the new variable is
decoupled from the external source. In other words, we want a change of variables that
cancels the last term in (18.26). The desired new variable is
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x̃′(E) ≡ x̃(E) +
̃(E)

m(E2 − ω2)
. (8.27)

When replacing x̃(E) from (18.27) in (18.26) we get

Sj[x(t)] =

∫ +∞

−∞

dE

2π

{
m

2
(E2 − ω2)x̃′(E)x̃′(−E)− 1

2
x̃′(E)̃(−E)− 1

2
x̃′(−E)̃(E)

+
1

2
̃(E)

1

m(E2 − ω2)
̃(−E) +

1

2
x̃′(E)̃(−E) +

1

2
x̃′(−E)̃(E)

− 1

m
̃(E)

1

(E2 − ω2)
̃(−E)

}
(8.28)

which results in

Sj[x(t)] =

∫ +∞

−∞

dE

2π

{
m

2
(E2 − ω2)x̃′(E)x̃′(−E)− 1

2m
̃(E)

1

(E2 − ω2)
̃(−E)

}
. (8.29)

Finally, we use the inverse Fourier transforms

x̃′(E) =

∫ +∞

−∞
dt eiEt x′(t) , ̃(E) =

∫ +∞

−∞
dt eiEt j(t) , (8.30)

to obtain the action back in the time variable

Sj[x(t)] =

∫ +∞

−∞
dt

{
m

2
ẋ′2(t)− mω2

2
x′2(t)

}
− 1

2m

∫ +∞

−∞
dt

∫ +∞

−∞
dt′ j(t)D(t− t′)j(t′) ,

(8.31)

where we have defined

D(t− t′) ≡
∫ +∞

−∞

dE

2π
e−iE(t−t′) 1

E2 − ω2
. (8.32)

It is interesting to point out that D(t−t′) is the Green function associated to the equation
of motion, which for the harmonic oscillator is

(
∂2

∂t2
+ ω2

)
x(t) = 0 , (8.33)
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It is straightforward to check that D(t− t′) as written in (18.32) satisfies

(
∂2

∂t2
+ ω2

)
D(t− t′) = −δ(t− t′) . (8.34)

Coming back to (18.31), we can see that the action is now separated into two pieces:
one that is source-independent and one that contains all the dependence on the external
source. The first term in (18.31) will give rise to Z[0], which means that all the dynamical
information on the correlation functions defined by (18.17) is in the second term. Thus, we
need to concentrate in understanding the function D(t−t′). We will do this by performing
the integral in (18.32).

To compute D(t− t′) we will analytically continue E to the complex plane. In particular
we will write

D(t− t′) =

∫ +∞

−∞

dE

2π
e−iE(t−t′) 1

E2 − ω2 + iε
, (8.35)

where ε is a real, positive and infinitesimal constant. For instance, the singularities in E
can be shifted to complex values by shifting the oscillator frequency from ω2 to ω2 − iε.
Now the poles are shifted: from ±ω to ω − iε and −ω + iε (see Figure 18.1). We can
already see that allowing for an imaginary part for the energy could be equivalent to
having an imaginary time, as long as the signs of these imaginary times are appropriately
chosen. Thus, we will see that choosing the shift iε in the energy singularities is taken
the place of the imaginary time prescription.

Now to perform the integral we have to decide how to close the contour in order to use
Cauchy’s theorem. The choice of contour will depend on the time ordering.

(t− t′) > 0: We need to close the contour with Im[E] < 0, so that when Im[E]2 +

Re[E]2 →∞ the semi-circle does not contribute.2 In this case then only the pole at ω− iε
contributes and according to Cauchy’s theorem we have

D(t− t′) = (−2πi)
1

2π
e−iω(t−t′) 1

2ω
,

= −i e
−iω(t−t′)

2ω
. (8.36)

(t− t′) < 0: For this time ordering we need to close the contour for Im[E] > 0 so that

the semi-circle does not contribute.3 This results in

2We see that this is equivalent to t→ −iτ and t′ → +iτ ′.
3Conversely, this is equivalent to t→ +iτ and t′ → −iτ ′.
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Figure 8.1: Contours in the complex E plane. For (t− t′) > 0 we need to close the (blue)
contour for Im[E] < 0. For (t − t′) < 0 we can use the (red) contour above, i.e. for
Im[E] > 0.

D(t− t′) = (+2πi)
1

2π
e+iω(t−t′) 1

−2ω
,

= −i e
+iω(t−t′)

2ω
. (8.37)

Then, we can combine both results independently of the time ordering in the following
expression

D(t− t′) = − i

2ω
e−iω|t−t

′| . (8.38)

With the answer in (18.38) we will be able to compute correlation functions using the
generating functional

Z[j] = Z[0] e
− i

2m

∫ +∞

−∞
dt

∫ +∞

−∞
dt′ j(t)D(t− t′) j(t′)

, (8.39)

where we used



8.3. EXAMPLE: THE HARMONIC OSCILLATOR 9

Z[0] =

∫
Dx′(t)eiS[x′(t)] , (8.40)

and

S[x′(t)] =

∫ +∞

−∞
dt

{
m

2
ẋ′2(t)− mω2

2
x′2(t)

}
. (8.41)

The assumption we are making in (18.40) is that the measure of the path integral is
invariant under the transformation

x(t) −→ x′(t) = x(t) +
1

m

∫ +∞

−∞
dt′D(t− t′)j(t′) , (8.42)

that is that Dx′(t) = Dx(t). This is a good assumption in the example we are considering.
In general, the failure of the invariance of the measure under (18.42) would signal the
existence of a so-called anomaly: an apparent symmetry of the classical theory (in this case
translation) that is not respected by the quantization procedure, in this case represented
by the path integral and in particular its measure. We will see examples of anomalies
later in the course. But for now we do not have to worry about them.

We are now in a position to compute correlation functions using (18.17). We start with
the product of two position operators

〈0|T (x(t1)x(t2))|0〉 =
(−i)2

Z[0]

δ2

δj(t1) δj(t2)
Z[j]

∣∣∣∣
j=0

. (8.43)

If we expand the exponential in (18.39) as

e−
i

2m

∫
dt

∫
dt′ j(t)D(t−t′) j(t′) = 1− i

2m

∫ +∞

−∞
dt

∫ +∞

−∞
dt′ j(t)D(t− t′) j(t′) + . . . , (8.44)

it is clear that for the correlation function in (18.43) we only need the first term in the
expansion, since all the higher order terms in j(t) will vanish when making j(t) = 0 after
the functional derivative. In this way we obtain

〈0|T (x(t1)x(t2))|0〉 =
i

m
D(t1 − t2) =

1

2mω
e−iω|t1−t2| . (8.45)

Then we can take the t1 → t2 limit to obtain
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〈0|x2|0〉 = lim
t1→t2
〈0|T (x(t1)x(t2))|0〉 =

1

2mω
, (8.46)

which is the well known result from the usual treatment of the harmonic oscillator.

For applications to matrix elements between occupied states we need to introduce the
definition of states with n particles as

|n〉 =
1√
n!

(a†)n |0〉 (8.47)

where the creation operator is defined in terms of position and momentum in the usual
way

a† =

√
mω

2

(
x− i

mω
p

)
=

√
mω

2

(
1− i

ω

∂

∂t

)
x(t) , (8.48)

and where in the last equality we replaced the momentum by p = ẋ/m. With these
definitions now we can compute, for instance

〈0|x|1〉 = lim
t1→t2

√
mω

2

(
1− i

ω

∂

∂t2

)
〈0|x(t1)x(t2)|0〉

= lim
t1→t2

√
mω

2
(−i)2

(
1− i

ω

∂

∂t2

)
1

Z[0]

δ2Z[j]

δj(t1) δj(t2)

= lim
t1→t2

√
mω

2

(
1− i

ω

∂

∂t2

)
i

m
D(t1 − t2) =

1√
2mω

, (8.49)

which is the correct answer. Even more interesting is computing

〈1|x2|1〉 =
mω

2
lim

t1→t+,t2→t−

(
1 +

i

ω

∂

∂t1

) (
1− i

ω

∂

∂t2

)
〈0|x(t1)x2(t)x(t2)|0〉 , (8.50)

We will see that this is similar to computing a four-point correlation function in quantum
field theory. We obtain
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〈1|x2|1〉 =
(−i)4

Z[0]
lim

t1→t+,t2→t−

(mω
2

) (
1 +

i

ω

∂

∂t1

) (
1− i

ω

∂

∂t2

)
δ4

δj(t1) δj(t2) δj(t) δj(t′)
Z[j]

∣∣∣∣
j=0

=
mω

2

(
i

m

)2

lim
t1→t+,t2→t−

(
1 +

i

ω

∂

∂t1

) (
1− i

ω

∂

∂t2

)
×{D(t1 − t2)D(0) +D(t1 − t)D(t− t2)} =

3

2mω
, (8.51)

which again is the right answer for the harmonic oscillator. The equality before last
says that the four-point function can be obtained as the sum over products of two-point
functions, the D’s. We will obtain a similar result in quantum field theory, where it will
have the name of Wick’s theorem.

8.4 The Path Integral and Statistical Mechanics

We end this lecture with a very important connection of the path integral formulation to
statistical mechanics. In general we can write the partition function of a system as

Z = Tr
[
e−βH

]
, (8.52)

where the trace is understood to run over all possible indices and

β =
1

kB T
(8.53)

For instance, in terms of eigenstates of the Hamiltonian we can write

Z =
∑
n

〈n|e−βH |n〉 , (8.54)

with |n〉 energy eigenstates. Inserting position eigenstates we get

Z =

∫
dx
∑
n

〈n|x〉〈x|e−βH |n〉

=

∫
dx
∑
n

〈x|e−βH |n〉〈n|x〉 , (8.55)
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where in the last equality we swapped the factor with impunity assuming we are dealing
with bosons, and we would have picked up a sign if we were dealing with fermions. We
then have

Z =

∫
dx 〈x|e−βH |x〉 , (8.56)

Clearly, the partition function in (18.56) can be understood as a path integral with xi =
xf = x and we make the identifications

β =
i

h̄
t . (8.57)

In particular, we can write the partition function as

Z =

∫
Dx(τ) e

−1

h̄

∫ h̄β

0

dτ

{
1

2
m

(
∂x

∂τ

)2

+ V (x)

}
, (8.58)

where we have defined τ ≡ it. Clearly, we can see that going to back to real time we
would obtain the action. However in this imaginary time τ , which is actually τ = h̄β the
inverse temperature, we should remember the periodicity condition

x(0) = x(h̄β) . (8.59)

The path integral in (18.58) is said to be in terms of the Euclidean action, but this is
nothing but the hamiltonian. The expression in (18.58) is the starting point for the path
integral formulation of statistical systems. We will see that many such systems then can
be treated in this way using the methods of quantum field theory we will derive in the
functional integral formulation in future lectures.

Additional suggested readings

• Modern Quantum Mechanics, by J. J. Sakurai, Chapter 2.5.

• Quantum Field Theory , by M. Srednicki, Chapter 7.


