
Lecture 4

Fermions

In the previous lectures we have seen that attempts to describe the quantum mechani-
cal evolution by aplying the Klein-Gordon equation to the wave-function leads to several
problems. In particular the zero component of the Klein-Gordon current cannot be inter-
preted as a probability density, as it is in the case of the Schrödinger current, since is not
definite positive. Here we will follow Dirac’s path in obtaining a relativistic description
of the wave-function that relies on one time derivative as well as one spatial derivative.
Eventually, the technology developed for the Dirac equation, will be used once we consider
the quantization of fermionic fields obeying it.

4.1 The Dirac Equation

The aim is to write an evolution equation for the wave function that is first order in both
time and space derivatives in order for it to have a chance of being Lorentz invariant. The
starting point is to write the following

i
∂ψ(x, t)

∂t
= ℵψ(x, t) , (4.1)

where the operator ℵ needs to be at most linear in spatial derivatives, and such that the
“squared” of this equation

−∂
2ψ(x, t)

∂t2
= ℵ2ψ(x, t) , (4.2)

is the Klein-Gordon equation. The most general form of the operator ℵ is

ℵ = −i~α · ~∇+ α4m , (4.3)
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2 LECTURE 4. FERMIONS

where the αi’s with i = 1, 2, 3 and α4 are arbitrary coefficients.The last term, containing α4

is defined proportional to the mass m for reasons that will become clear next. Constraints
on these coefficients result from imposing that (4.2) is the Klein-Gordon equation. That
is, we need

ℵ2 = −αiαj
∂2ψ

∂xi∂xj
− im(αjα4 + α4αj)

∂ψ

∂xj
+ α2

4m
2ψ

= − ∂2ψ

∂xj∂xj
+m2ψ , (4.4)

where in the last equality we are enforcing the Klein-Gordon equation, the j index is
summed, and in the first line we did not assume the αi’s or α4 commute. In fact in order
for the last equality in (4.4) to be valid the α’s must satisfy the following constraints:

• For i 6= j, αiαj + αjαi = 0

• For all i’s αiα4 + α4αi = 0

• For i = j, α2
i = 1

• α2
4 = 1

Clearly this means that these are not just numbers since they do not commute. Then
they must be matrices. The above properties tell us quite a bit about them.

Traceless: We can see that all the αi matrices must be traceless. For instance,

αiα4 + α4αi = 0

αi = −α4αiα4

Tr[αi] = −Tr[α4αiα4]

Tr[αi] = −Tr[αi] = 0 (4.5)

The same can be done for α4 to show that Tr[α4] = 0.

Squared Matrices: Since the operator ℵ must be hermitian the matrices must be N ×N
squared matrices.

Even dimension: Given that α2
i = 1 = α2

4, the eigenvalues must be ±1. But for them to
be traceless we will need for N to be even.

So we learned that the Dirac matrices in ℵmust be even dimensional, squared and traceless
matrices. For N = 2 there are three such matrices: Pauli’s σ1, σ2 and σ3. But we need
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four. If the particle were massless, we would not need α4, and we could use the Pauli
matrices to write the Dirac equation. We will see this at work later. But for now we
want to consider the most general case when m 6= 0. This leaves us with N = 4, so the
Dirac matrices are 4×4. We can rewrite the Dirac equation in increasingly compact ways.
Starting as

i

(
α4

∂

∂t
+ α4αj

∂

∂xj

)
ψ(x, t)−mψ(x, t) = 0 , (4.6)

we can define the following matrices suggesting a covariant notation:

γ0 ≡ α4 ,

~γ ≡ α4 ~α , (4.7)

which then results in

i

(
γ0

∂

∂x0
+ γj

∂

∂xj

)
ψ(x, t)−mψ(x, t) = 0 . (4.8)

We may use the more compact covariant notation as in

(iγµ∂µ −m)ψ(x, t) = 0 , (4.9)

where we should remember that

∂µ =
∂

∂xµ
= (

∂

∂t
, ~∇) , (4.10)

so that is clear that γµ contracts as a contravariant four-vector (although it does not
transform like one! ), which means γµ = (γ0,−~γ). Finally, we can introduce the following
notation for the contraction with gamma matrices:

γµ aµ =6a , (4.11)

where aµ is some object with a Lorentz index such as a four-vector or a four-gradient.
Then we can rewrite (4.9) as

(i 6∂ −m)ψ(x, t) = 0 . (4.12)
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To obtain the anti-commutators of the γµ matrices, we rewrite the one of the αj’s with
j = 1, 2, 3 as

{αi, αj} = 2δij . (4.13)

Using (4.7) we obtain

{γµ, γν} = 2gµν . (4.14)

where gµν is Minkowski’s metric, i.e. gµν = diag.(1,−1,−1,−1). The relation in (4.14)
defines the algebra satisfied by the gamma matrices, called the Clifford algebra.

An example of a representation of the gamma matrices is

γ0 =

(
1 0
0 −1

)
~γ =

(
0 ~σ
−~σ 0

)
, (4.15)

where all the entries are to be read as 2× 2 matrices and 1 is the identity in 2× 2. This
is the standard representation.

As we can see from the form of the Dirac equation (4.12), the object we used to call the
wave function, ψ(x, t), must be a more complex one. The indices corresponding to the
gamma matrices appearing in (4.12) must be contracted with indices in ψ(x, t). So we
now should understand that there is an implicit index, i.e. ψa(x, t), where a = 1, ..., 4
contracts with the ones in the gamma matrices. This is a spinorial index, and ψ(x, t)
is called a spinor. As we will see below, the implication of having this free index is that
spinors transform non-trivially under Lorentz transformations. However, we will see that
their transformation is different from that of four-vectors. We will see how in the next
section.

But before we go to the Lorentz transfomation properties of spinors, we want to check
if it is possible to interpret the wave-function ψ(x, t) satisfying the Dirac equation as a
probability amplitude. For this, we complex conjugate (4.9) to obtain

ψ†(i(γµ)†∂µ +m) = 0 , (4.16)

where the derivative is applied to the left. But we have that

(γ0)† = γ0, ~γ† = γ0~γγ0 , (4.17)

which results in
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(γµ)† = γ0γµγ0 . (4.18)

This allows us to rewrite (4.16) as

ψ†(iγ0γµγ0∂µ +m) = 0 . (4.19)

If we now define

ψ̄ ≡ ψ†γ0 , (4.20)

we arrive at the following form for the conjugate Dirac equation

ψ̄(iγµ∂µ +m) = 0 , (4.21)

where, as before, the derivative is acting on the left. Then using both the Dirac equation
and its conjugate we have

iγµ∂µψ = mψ

ψ̄iγµ∂µ = −mψ̄ , (4.22)

or, by multiplying the first of these equations by ψ̄ on the left and the second by ψ on
the right, we obtain

(∂µψ̄)iγµψ + iψ̄γµ∂µψ = 0 , (4.23)

Therefore we can define the conserved current

jµ ≡ ψ̄γµψ , (4.24)

satisfying ∂µ j
µ = 0 according to (4.23). We are now in a position to check if the density

associated with this conserved current can have a probabilistic interpretation. The wave-
function ψ(x, t) must be a four-component spinor. We will derive its transformation
properties later on. But for now it suffices to note that it can be decomposed into two
two-component spinors as

ψ =

(
ξ
χ

)
. (4.25)
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The Dirac equation results in two coupled equations for ξ and χ. Using the standard
representation of the γ matrices we have

i
∂ξ

∂t
= mξ − i~σ · ~∇χ

i
∂χ

∂t
= −mχ− i~σ · ~∇ξ . (4.26)

It is interesting to notice that the two coupled equations in (4.26) decouple if m = 0. In
this case it is possible to describe the system using Pauli matrices, as we anticipated at
the beginning of this section. In the general case, with m 6= 0, we can compute ρ = j0.
This is

ρ = ψ†γ0γ0ψ = ψ†ψ = ξ†ξ + χ†χ , (4.27)

which is clearly positive definite. So the Dirac equation describes the relativistic evolution
of the wave-functions and allows for a probabilistic interpretation. We will still have to
deal with the problem of negative energies that will inevitably lead us into quantum field
theory, i.e. describing the spinor ψ(x, t) as a quantum field, as opposed to the wave
function of a single particle.

4.2 Lorentz transformation of the Dirac Spinor

All we know about the Dirac spinors is that they obey the Dirac equation. But how do
they behave under Lorentz transformations ? In order to answer this question we will
impose that the Dirac equation be the same in any frame. Suppose we have the following
homogenous Lorentz transformation

x
′µ = Λµ

ν x
ν , (4.28)

relating the coordinates of the two frames. We want that the equation in the unprimed
frame

iγµ
∂ψ(x)

∂xµ
−mψ(x) = 0 , (4.29)

be obtained again in the new frame. I. e. the Dirac equation in the primed frame must
have the form
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iγµ
∂ψ′(x′)

∂x′µ
−mψ′(x′) = 0 , (4.30)

where we have defined the spinor in the primed frame by the transformation

ψ′(x′) ≡ S(Λ)ψ(x) . (4.31)

In (4.31) S(Λ) is a 4× 4 non-singular matrix that depends on the Lorentz transformation
Λ on the coordinates. Since

∂x′µ

∂xν
= Λµ

ν , (4.32)

then we have that

∂xν

∂x′µ
= (Λ−1)νµ . (4.33)

Then we can do the following replacement in (4.30)

∂

∂x′µ
→ ∂xν

∂x′µ
∂

∂xν
= (Λ−1)νµ

∂

∂xν
. (4.34)

As a result, (4.30) reads now as

iγµ(Λ−1)νµ
∂

∂xν
S(Λ)ψ(x) = mS(Λ)ψ(x) . (4.35)

In order for the above equation to go back to the Dirac equation in the unprimed frame
(4.29) we need to impose the following identity on S(Λ)

γµ (Λ−1)νµ = S(Λ) γν S−1(Λ) . (4.36)

Equation (4.36) defines S(Λ), and therefore it also defines the Dirac spinor ψ(x, t) through
its Lorentz transformation properties. In theory group parlance, four-vectors are a “vec-
torial” representation of the Lorentz group, whereas spinors furnish a spinorial represen-
tation.

In order to obtain S(Λ) we will expand the Lorentz transformations (4.28) around the
identity
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Λµ
ν ' δµν + ωµν , (4.37)

where we assume ωµν is infinitesimal, i.e. ωµν � δµν . The inverse infinitesimal transforma-
tion is

(Λ−1)µν = δµν − ωµν , (4.38)

which is required so that

(Λ−1)µνΛν
σ ' (δµν − ωµν )(δνσ + ωνσ) = δµσ + ωµσ − ωµσ + . . . , (4.39)

where the dots refer to terms of higher order in ωµσ . It is important to notice that ωµν
must be antisymmetric. For this we must go no further than the invariance of the interval

gµν dx
′µ dx′ν = gρσ dx

ρ dxσ , (4.40)

resulting in

gµν
∂x′µ

∂xρ
∂x′ν

∂xσ
= gµν Λµ

ρ Λν
σ = gρσ . (4.41)

Then, for infinitesimal Lorentz transformations we have

gρσ = gµν (δµρ + ωµρ ) (δνσ + ωνσ) = gρσ + ωσρ + ωρσ + . . . , (4.42)

which clearly implies that

ωσρ = −ωρσ (4.43)

We can now expand the spinor transformation matrix S(Λ) as

S(Λ) ' 1− i

4
σµν ω

µν + . . . , (4.44)

where the σµν are generic 4×4 matrices, which must be antisymmetric under the exchange
of µ and ν since ωµν is. If we apply (4.36) we have, to first order in ω,

γµ(δνµ − ωνµ) = (1− i

4
σαβω

αβ) γν (1 +
i

4
σρσω

ρσ) . (4.45)
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Using the antisymmetry of ωµν , we can write

γµωνµ =
1

2
δναγβω

αβ +
1

2
δνβγαω

βα =
1

2
(δναγβ − δνβγα)ωαβ . (4.46)

Using the result above in (4.45) we obtain

[γν , σαβ] = 2i (δναγβ − δνβγα) . (4.47)

The equality (4.47) indicates that σαβ must contain the product of two gamma matrices,
in addition to being antisymmetric in the Lorentz indices. It is relatively straightforward
to see that (4.47) is satisfied by

σαβ =
i

2
[γα, γβ] . (4.48)

Finally, for finite ωµν ’s we have that the Lorentz transformation of spinors is given by

S(Λ) = e−
i
4
σµνωµν . (4.49)

4.3 Relation to the Poincaré Group

It is interesting to put the results obtained above in the context of the group theory asso-
ciated with the most general relativistic transformations. On the spacetime coordinates
these are

x′µ = Λµ
ν x

ν + aµ , (4.50)

where the four-vector aµ parametrizes translations.

Let us consider the most general situation of the transfomation properties of states
Ψ in Hilbert space under such transformations. At the end, we will make contact with
the specific case for spinors. States in Hilbert space will then generally transform under
(4.50) as

Ψ −→ U(Λ, a) Ψ , (4.51)

with U(Λ, a) a linear unitary transformation. These transformations form a group. For
instance, if we apply two successive transformations, they obey
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U(Λ̄, ā)U(Λ, a) = U(Λ̄ Λ, Λ̄a+ ā) . (4.52)

To convince ourselves that this is the case, we just consider two successive applications of
(4.50), as in

x′′µ = Λ̄µ
ν x
′ν + āµ = Λ̄µ

ν

(
Λν
ρ x

ρ + aν
)

+ āµ

= Λ̄µ
νΛν

ρ x
ρ + Λ̄µ

ν a
ν + āµ , (4.53)

which corresponds to the Poincaré transformation shown in the argument of the right
hand side in (4.52).

If we now consider infinitesimal transformations, we can expand them according to

U(1 + ω, ε) ' 1 +
i

2
ωρσ J

ρσ − iεµ P µ , (4.54)

where εµ is an infinitesimal translation. Here Jρσ and P µ are in principle generic coeffi-
cients of the expansion that do not depend on ωµν and εµ. Of course, as we will see below,
they will have obvious interpretations.

Now, by making use of the relation (4.52) we can now consider the composition of three
transformations, with the second being the infinitesimal one. This is given by

U(Λ, a)U(1 + ω, ε)U−1(Λ, a) = U(Λ(1 + ω)Λ−1,Λε− ΛωΛ−1a) , (4.55)

Expanding (4.55) and equating the coefficients of ω and ε, it is straightforward to show
that

U(Λ, a) Jρσ U−1(Λ, a) = Λρ
µ Λσ

ν (Jµν − aµP ν + aνP µ) (4.56)

U(Λ, a)P ρ U−1(Λ, a) = Λρ
µ P

µ . (4.57)

If we now consider Λ and a themselves as infinitesimal, i.e. Λµ
ν ' δµν + ωµν , and aµ = εµ,

and we apply these in (4.56) and (4.57), then once again collecting the leading terms in
the infinitesimal coefficients we can obtain the following identities:

i[Jµν , Jρσ] = gνρ Jµσ − gµρ Jνσ − gσµ Jρν + gσν Jρµ

i[P µ, Jρσ] = gµρ P σ − gµσ P ρ

[P µ, P ν ] = 0 (4.58)
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This collection of commutators is referred to as the Poincaré algebra. As we know, the
quantities

P 0 = H ,
~P = {P1, P2, P3} ,
~J = {J23, J31, J12} , (4.59)

are conserved quantities. On the other hand,

~K = J10, J20, J30 , (4.60)

are the so-called boost vectors and are not conserved. We recover, for instance, the well
known commutation relations for angular momentum

[Ji, Jk] = εijk Jk (4.61)

for i, j = 1, 2, 3 the spatial indices. In the case of interest here, i.e. the spinorial rep-
resentation of the homogenous Lorentz group (aµ = 0), we have that we identify the
generators of the group Jµν with the matrices σµν (up to factors of 1/2 in the definitions).
This means that σij are the generators of spatial rotations in the spinorial representation,
whereas σ0i generates boosts along the axis î. In explicit form we have (in the standard
representation)

σ0i =
i

2
[γ0, γi] = i

(
0 σi

σi 0
,

)
(4.62)

for the boosts, and

σij =
i

2
[γi, γj] = εijk

(
σk 0
0 σk ,

)
(4.63)

for spatial rotations. As we will see in a later lecture, The σij are, up to a factor of two, the
components of the spin. Then, just as the components of the angular momentum are the
generators of rotations in the vetor representation of the Poincaré group, we will see that
the spin components are the generators of spatial rotations in the spinorial representation.
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4.4 Transformation Properties of Bilinear Operators

We would like to know the behavior under Lorentz transformations of fermion bilinear
operators. This way we will know how to construct a Lorentz invariant lagrangian. We
will start by the simplest fermion bilinear operator: ψ†ψ. The spinor transformation
(4.31) results in

ψ†ψ −→ ψ†S†(Λ)S(Λ)ψ . (4.64)

But it turns out S(Λ) is not a unitary transformation, so S†(Λ) 6= S−1(Λ). This stems
from the fact that σ†µν 6= σµν . On the one hand, using (4.62) we have

(σ0i)
† = −σ0i , (4.65)

whereas from (4.63) we can easily infer that

(σij)
† = +σij . (4.66)

Then, from (4.36) is clear that S†(Λ) 6= S−1(Λ), and thus ψ†ψ is not invariant. On the
other hand, if we define

ψ̄(x) ≡ ψ†(x)γ0 , (4.67)

this object now transforms into

ψ̄′(x′) = ψ† S†(Λ)γ0 = ψ†γ0γ0S†(Λ)γ0 , (4.68)

where the in last equality we used (γ0)2 = 1. But making use of (4.65) and (4.66) it is
straightforward to prove

γ0 S†(Λ)γ0 = γ0e+(i/4)σ†
µνω

µν

γ0 = e+(i/4)σµνωµν , (4.69)

where to prove the last equality we need to use that1 σ0iγ
0 = −γ0σ0i, but σijγ

0 = +γ0σij.
With this we have then that

γ0 S†(Λ) γ0 = S−1(Λ) , (4.70)

1These are satisfied independently of the representation used for the Dirac matrices.
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which implies that

ψ̄′(x′) = ψ̄(x )S−1(Λ) . (4.71)

This then allows us to show that

ψ̄(x)ψ(x) −→ ψ̄(x)S−1(Λ)S(Λ)ψ(x) = ψ̄(x)ψ(x) , (4.72)

so ψ̄ψ is Lorentz invariant.

In general, we would like to know the transformation properties of various fermion bilin-
ears, schematically represented by

ψ̄(x) Aψ(x) , (4.73)

where the general Dirac structure is A = {1, γµ, σµν , . . . }.
For instance, for ψ̄(x) γµ ψ(x) we have

ψ̄′(x′) γµ ψ′(x′) = ψ̄(x)S−1(Λ) γµ S(Λ)ψ(x) . (4.74)

Earlier we derived that

S−1(Λ) γµ S(Λ) = Λµ
ν γ

ν , (4.75)

which means that

ψ̄(x) γµ ψ(x) −→ Λµ
ν ψ̄(x) γν ψ(x) . (4.76)

The result is that ψ̄(x) γµ ψ(x) transforms like a regular four-vector. This should be the
case since this is the fermion conserved four-current. The transformation properties of
other fermion bilinear operators can be derived in similar fashion.

Additional suggested readings

• Quantum Field Theory, by C. Itzykson and J. Zuber, Chapter 2.

• The Quantum Theory of Fields, by S. Weinberg. See Sections 2.3 and 2.4.


