
Lecture 24

Renormalization of QED

We are now in a position to apply the renormalization procedure to QED. We will proceed
by first defining the renormalized fields, coupling and mass so that we can write the theory
in terms of renormalized parameters and the corresponding counterterms. The next step is
to impose renormalization conditions so we can then compute the counterterms. However,
since QED is a gauge theory there will be a subtlety that results in relations among
counterterms. We will address this before we actually compute them. We start with the
unrenormalized lagranian

L = −1

4
F 0
µνF

0µν + ψ̄0 (i 6D −m0)ψ0

= −1

4
F 0
µνF

0µν + ψ̄0 (i 6∂ −m0)ψ0 − e0ψ̄0γ
µψ0A

0
µ . (24.1)

Field Renormalization:

We define the corrections to the fermion and gauge boson fields by

ψ0 ≡ Z
1/2
2 ψ (24.2)

A0
µ ≡ Z

1/2
3 Aµ . (24.3)

Here Z2 and Z3 result in corrections to the propagators of fermions and the photon
respectively. Writing the propagators in terms of the renormalized fields defined in (24.2
and (24.3) results in

iZ2

6p−m0

,
−iZ3 gµν

q2
. (24.4)
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If we now rewrite the lagrangian in terms of renormalized fields we have

L = −Z3
1

4
FµνF

µν + Z2ψ̄ (i 6∂ −m0)ψ − e0Z2Z
1/2
3 ψ̄γµψAµ , (24.5)

where we have just replaced ψ0 and A0
µ by (24.2) and (24.3).

Coupling Renormalization:

We now introduce the renormalized coupling e through the relation

eZ1 ≡ e0 Z2 Z
1/2
3 . (24.6)

The renormalization condition to fix e at a given value of the momentum is typically
chosen so as to obtain a value coming from a precise experimental measurement. Atomic
physics provides very good examples of this.

Mass Renormalization:

We finally define the renormalized mass m through the relation

m+ δm ≡ Z2m0 . (24.7)

We are now in a position to define the counterterms through

Z1 ≡ 1 + δ1

Z2 ≡ 1 + δ2 (24.8)

Z3 ≡ 1 + δ3 ,

where the definitions suggest that we will consider the δi’s as small perturbations coming
from radiative loop corrections. Using (24.6), (24.7) and (24.8) in (24.5) we obtain the
renormalized lagrangian with the appropriate counterterms.

L = −1

4
FµνF

µν + ψ̄ (i 6∂ −m)ψ − eψ̄γµψAµ

−1

4
δ3FµνF

µν + ψ̄ (iδ2 6∂ − δm)ψ − eδ1ψ̄γµψAµ (24.9)

The Feynman rules associated with the first line of (24.9) are the same as the ones
derived earlier for the tree-level theory, only now we use the renormalized coupling e, the
renormalized mass m and the renormalized electron and fóton fields. On the other hand,
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= −i(gµνq2 − qµqν) δ3

= i(δ2 6p− δm)

= −ieγµ δ1

Figure 24.1: Feynman rules for the counterterms in the renormalized QED lagrangian
(24.9).

the second line of the equation above generates new Feynman rules associated with the
counterterms. These are shown in Figure 24.

To understand the form of the photon two-point function counterterm it helps to notice
that

−1

4
δ3FµνF

µν = −1

2
δ3Aν

(
∂µ∂ν − gµν∂2

)
Aµ , (24.10)

where we have integrated by parts. Going to momentum space this expression turns to
the one at the top of Figure 24.

24.1 Renormalization Conditions

The next step is to impose renormalization conditions that will fix the computation of
the couterterms δ1, δ2 δ3 and δm to the desired order in perturbation theory. The one-
particle irreducible (1PI) diagrams contributing to the propagators and the vertex define
the appropriate momentum dependent structures. These are shown in the figure below
and besides the 1PI diagrams to the desired order they also include the counterterms.
Here Γµ(p, p′) is some non-trivial Dirac structure containing γ matrices, momenta, etc.

We will choose the following renormalization conditions:

Σ(6p = m) = 0 , (24.11)
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= i(gµνq
2 − qµqν) Π(q2)

= −iΣ(6p)

= −ieΓµ(p, p′)

Figure 24.2: 1PI contributions to the photon and fermion propagators and the vertex.

fixes m, the renormalized mass.

dΣ(6p)
d 6p

∣∣∣∣
6p=m

= 0 , (24.12)

fixes the residue of the fermion propagator. Finally, the renormalization condition on the
vertex

−ieZ1Γ
µ(p− p′ = 0) = −ieγµ , (24.13)

fixes the coupling, i.e. defines the electron charge e at q2 = 0. As we will see later, we
can compute the one-loop 1PI diagrams contributing to Π(q2), Σ(6p) and Γµ(p, p′). These
plus the couterterm contributions from Figure 24 are forced to satisfy the renormalization
conditions above. These determine the counterterms and define the renormalized param-
eters of the theory, i.e. m, e and the renormilazed fields ψ and Aµ. Then, armed with this
knowledge we can compute any process to this order in perturbation theory and it will
be finite and well defined, as we know from having performed the same procedure in the
scalar case. However, in QED there is a new element: QED is a gauge theory, and gauge
invariance imposes new restrictions on the renormalization procedure. These restrictions
appear in the form of relations among some of the couterterms. We will consider these in
what follows before we embark in the perturbative calculation of the counterterms.
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24.2 The Ward Identities

In the presence of symmetries, and therefore of conserved currents, not all counterterms
are independent. In what follows we will derive a generalized form of the Ward identity
derived in Lecture 18, which will result in relations among counterterms for the case of
a conserved vector current. In this more general version, we will not require the external
momenta to be on shell 1.

We will be considering the case of a scalar field carrying a global U(1) conserved charge,
which will be simpler but will illustrate very well the more general case of QED. We start
with the theory of a self-interacting complex scalar field with lagrangian

L = ∂µφ
∗∂µφ−m2φ∗φ− λ (φ∗φ)2 , (24.14)

which is invariant under the global U(1) transformations

φ(x)→ eiα φ(x) , φ∗(x)→ e−iα φ∗(x) , (24.15)

where α is a real constant. The conserved vector current associated with (24.15) is

Jµ = i [(∂µφ
∗)φ− (∂µφ)φ∗] . (24.16)

This is analogous to the QED charged fermion current, given by eψ̄γµψ. Just as in the
QED case we can write the three-point function for the insertion of the current between
two fields. This is shown in Figure 24.3 below.

Figure 24.3: Insertion of the vector current in the theory of a complex scalar. This three-
point function might then be coupled to an external vector source, such as the photon in
QED.

The vector three-point function associated with the diagram in Figure 24.3 can then be
coupled to an external vector field, such as the photon in QED. But for the purpose of

1This is the so called Ward-Takahashi identity. When considering on shell external momenta, we will
recover the one obtained earlier.
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deriving the Ward identities all we need is the form of the three-point function. It is given
by

Gµ(p, q) =

∫
d4x d4y e−iq·xe−ip·y〈0|T Jµ(x)φ(y)φ†(0)|0〉 , (24.17)

where T denotes the time-ordered product. In (24.17) we took the third spacetime posi-
tion to be the origin, i.e. z = 0. This is possible since the d4z integral can be eliminated
by momentum conservation, which we assume implicitly. The vector current carries mo-
mentum qµ. If we multiply (24.17) by it we have

qµGµ(p, q) =

∫
d4x d4y i∂µx

(
e−iq·x−ip·y

)
〈0|T Jµ(x)φ(y)φ†(0)|0〉

= (−i)
∫
d4x d4y e−iq·x−ip·y ∂µx

(
〈0|T Jµ(x)φ(y)φ†(0)|0〉

)
. (24.18)

In the first line of (24.18) we wrote qµ as i∂µx applied to the exponential. In the second
line we integrated by parts so that the derivative with respect to the spacetime point x is
applied on the three-point function in position space. But we should be careful how we
apply this derivative since the current Jµ(x) is not the only x dependence there. There is
a hidden x dependence in the time-ordering. To see this explicitly, we write

T
(
Jµ(x)φ(y)φ†(0)

)
= θ(x0 − y0) Jµ(x)φ(y)φ†(0) + θ(y0 − x0)φ(y)Jµ(x)φ†(0)

+ θ(x0 − 0) Jµ(x)φ†(0)φ(y) + θ(0− x0)φ†(0)Jµ(x)φ(y)

+ θ(y0 − 0)φ(y)φ†(0)Jµ(x) + θ(0− y0)φ†(0)φ(y)Jµ(x) .

(24.19)

We now see that when applying ∂µx to this expression, there are additional terms other
than the divergence of the current Jµ(x). The result is

∂µxT
(
Jµ(x)φ(y)φ†(0)

)
= T

(
∂µxJµ(x)φ(y)φ†(0)

)
+ T

(
δ(x0 − y0) [J0(x), φ(y)]φ†(0)

)
+ T

(
δ(x0) [J0(x), φ†(0)]φ(y)

)
, (24.20)

where the δ functions appear as a result of taking the ∂0x derivatives on the θ functions and
the time-ordered operator is restored after taking the derivative in order to accommodate
the time order of the third factor.
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As a result we can write

qµGµ(p, q) = (−i)
∫
d4x d4y e−iq·x−ip·y 〈0|T

(
δ(x0 − y0) [J0(x), φ(y)]φ†(0)

)
|0〉

+ (−i)
∫
d4x d4y e−iq·x−ip·y 〈0|T

(
δ(x0) [J0(x), φ†(0)]φ(y)

)
|0〉 ,

(24.21)

where we have used current conservation. Next, we can use our knowledge of the com-
mutators, from the non-trivial quantization condition

[π(x, t), φ(x′, t)] = −iδ(3)(x− x′) , (24.22)

which for the theory in (24.14) corresponds to

[∂0φ
†(x, t), φ(x′, t)] = −iδ(3)(x− x′) . (24.23)

Then, using the explicit form of the zero component of the vector current in (24.16), we
obtain

[J0(x, t), φ(x′, t)] = δ(3)(x− x′)φ(x, t) , (24.24)

and

[J0(x, t), φ
†(x′, t)] = −δ(3)(x− x′)φ†(x, t) . (24.25)

Replacing these expressions above for the commutators into (24.21) we arrive at

qµGµ(p, q) = (−i)
∫
d4x e−i(q+p)·x 〈0|T

(
φ(x)φ†(0)

)
|0〉

+ (+i)

∫
d4y e−ip.·y 〈0|T

(
φ†(0)φ(y)

)
|0〉 . (24.26)
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Noticing that on the right-hand side of (24.26) we have the propagators in momentum
space, we can rewrite this expression as

−iqµGµ(p, q) = D̃(p)− D̃(p+ q) , (24.27)

where the momentum space propagator is of course given by

D̃(p) =
i

p2 −m2 + iε
. (24.28)

The expression (24.27) is already a version of the Ward identities: it tells us that, when
making use of current conservation and the explicit form of the current, the three-point
function (or at least its contraction with external momentum) is related to the two-point
function, i.e. the propagator. However, to state the Ward identity in terms of the vertex
function, i.e. the one entering physical amplitudes, we need to amputate Gµ(p, q) by
removing the external scalar propagators. We define the vertex function Γµ(p, q) by this
amputation procedure

−iqµΓµ(p, q) ≡ D̃−1(p+ q) (−iqµGµ(p, q)) D̃−1(p) . (24.29)

Inserting (24.29) into (24.27) we obtain the Ward identity in terms of the vertex function
Γµ(p, q), given by

−iqµΓµ(p, q) = D̃−1(p+ q)− D̃−1(p) . (24.30)

This identity states that the vertex function and the propagator are related through the
mere fact of vector current conservation. The Ward identity in (24.30) is then equivalent
to current conservation.

We can derive a similar Ward identity for QED, relating the three point function to the
fermion propagators. Of course, in this case, current conservation goes together with
gauge invariance. As we will see below for the case of QED, this relationship between
three- and two-point functions also results in relationships beween seemingly independent
counterterms.

24.3 Ward Identity in QED and Counterterm Rela-

tions

The derivation of the Ward identity in QED proceeds very similarly to what we did in the
previous section. The relevant diagram is the one in Figure 24.4, where we just replaced
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Figure 24.4: The insertion of the vector current in QED.

the scalar fields by fermions. The current is now

Jµ(x) = eψ̄(x)γµψ(x) . (24.31)

Just making use of (24.30) we obtain

−iqµΓµ(p, q) = S−1(p+ q)− S−1(p) , (24.32)

with S(p) the fermion propagator in momentum space.

We can use the Ward identity (24.32) to obtain a relationship between the counterterms
δ1 and δ2 associated with the vertex and fermion propagator. To do this we first recall
the renormalization condition for the vertex function (24.13)

eZ1 Γµ(q2 → 0) = eγµ . (24.33)

On the other hand, the renormalization condition (24.12) fixes the residue of the fermion
propagator such that

S(p) =
iZ2

6p−m+ iε
. (24.34)

Imposing (24.32) results in

−iqµZ−11 γµ = (−i)Z−12 (6p+ 6q −m)− (−i)Z−12 (6p−m) , (24.35)

or

−i 6qZ−11 = −i 6qZ−12 , (24.36)
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which results in

Z1 = Z2 , (24.37)

The expression above is a direct consequence of the Ward identity and therefore of gauge
invariance. It states that the renormalization of the charge and the residue of the fermion
propagator are one and the same. This can be restated in terms of counterterms as

δ1 = δ2 . (24.38)

Then, computing one of these counterterms is enough to know the other one in QED. We
will make use of this simplification in completing the renormalization procedure for QED.

Another important consequence of (24.37) can be seen by looking at (24.6), the definition
of the renormalized charge e

eZ1 = e0Z2Z
1/2
3 . (24.39)

We see that as a consequence of (24.37) this now reads

e = e0Z
1/2
3 . (24.40)

The expression above states that charge renormalization is entirely determined by the
renormalization of the photon field and is independent of the fermion field and vertex
renormalizations. Once again, this is a consequence of the Ward identity and therefore
also of gauge invariance. As we will see later, when we compute the vertex and fermion
field counterterms, these might depend on details such as the fermion masses. But since all
fermion fields with the same charge must transform equally under gauge transformations,
it is to be expected that the renormalized charge e should not depend on these details.
The Ward identity makes sure this is the case: that dependence drops out when Z1 and
Z2 cancel in (24.39).

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Section
7.4.

• Quantum Field Theory, by C. Itzykson and J. Zuber, Sections 7.1.3 and 8.4.1


