
Lecture 23

Regularization II: Dimensional
Regularization

We will introduce another method of regularization that makes use of the fact that the
problem of divergences can be ameliorated not only by increasing the power of momentum
of the denominator, but also by decreasing the power in the numerator. In fact, if we
make the number of dimensions d small enough so that the ddk factor carries less powers
of momentum, we can make any integral convergent even if they diverge for d → 4. To
implement this thinking we have to consider Feynman diagrams as analytic functions in
the number of dimensions.

Let us start once again with the four-point function in φ4 theory as introduced in Lec-
ture 20. Just as we did in Lecture 21, we focus on the s-channel diagram of Figure 20.5(a),
and Figure 21.1, depicted again below in Figure 23.1 for reference.

Figure 23.1: The s-channel one-loop correction to the four-point function Γ(s, t, u) in λφ4

theory. Here p = p1 + p2 = p3 + p4.

The integral of interest is
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I4 =

∫
d4k

(2π)4
1

k2 −m2 + iε

1

(p− k)2 −m2 + iε
, (23.1)

where the external momentum is p = p1 + p2 = p3 + p4. As we discussed previously,
this integral is logarithmically divergent. But if we analytically continue to a space of
d−1 spatial dimensions and one time dimension, we now can write the momentum in the
integral as

kµ = (k0, k1, k2, . . . , kd−1) , (23.2)

for any d. On the other hand, the external momentum need not be changed, since it is
not the source of divergences. So in the notation of d-dimensional Minkowski space it is
given by

pµ = (p0, p1, p2, p3, 0, . . . , 0) . (23.3)

With this extension we now have a d-dimensional integral as

Id = µ4−d
∫

ddk

(2π)d
1

k2 −m2 + iε

1

(p− k)2 −m2 + iε
, (23.4)

where we introduced the arbitrary mass scale µ in order to keep the correct units for the
integral. The crucial observation is that the integral in (23.4) is convergent for d < 4.
This is the only thing we need to assume about d in order to carry out the calculation.
It is the regulator of the method, which at the end of the calculation must be taking to
its original value, i.e. at the end we take the d → 4 limit to exhibit the divergences, in
analogy to the Λ→∞ in the Pauli-Villars method studied earlier.

To continue the calculation we now go through the same steps we performed in the
previous lecture: Feynman parametrization and Wick rotation. The relevant Feynman
parametrization of (23.4) is

Id = µε
∫

ddk

(2π)d

∫ 1

0

dx
1

[x ((p− k)2 −m2) + (1− x)(k2 −m2)]2
, (23.5)

where we defined

ε ≡ 4− d . (23.6)

The argument in brackets in the denominator can be written as
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D = k2 − 2xk · p+ xp2 −m2

= (k − xp)2 − x2p2 + xp2 −m2

= (k − xp)2 + x(1− x)p2 −m2 . (23.7)

Then, we can shift the integration variable defining

`µ ≡ kµ − x pµ , (23.8)

such that the argument of the denominator can now be written simply as

D = `2 − a2 , (23.9)

with

a2 ≡ m2 − x(1− x) p2 . (23.10)

Putting it all together we rewrite the d-dimensional integral as

Id = µε
∫ 1

0

dx

∫
dd`

(2π)d
1

[`2 − a2 + iε]2
. (23.11)

Performing the Wick rotation leaves the integral ready to be computed.

Id = i µε
∫ 1

0

dx

∫
dd`E
(2π)d

1

[`2E + a2 − iε]2
. (23.12)

The part that is a little trickier now is to carry out the angular integration for any arbitrary
value of d, even if it is not an integer, since we have

∫
dd`E =

∫
dΩd

∫
d`E `

d−1
E . (23.13)

To do this we turn to a trick. We start by noticing the equality for a Gaussian integral

∫ ∞
−∞

dx e−x
2

=
√
π . (23.14)
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Then we can write

(√
π
)d

=

(∫ ∞
−∞

dx e−x
2

)d
=

∫
ddx e−

∑d
i=1 x

2
i , (23.15)

where in the second equality we are assuming an euclidean d dimensional space with
x2 = x21 + · · ·+ x2d, just as we have in (23.13). So now we can continue (23.15) to get

(√
π
)d

=

∫
dΩd

∫
dx xd−1 e−x

2

=

∫
dΩd

∫ ∞
0

dx2

2
(x2)d/2−1 e−x

2

=

∫
dΩd

1

2
Γ(d/2) . (23.16)

In the last equality we used the integral definition of the Gamma function. From (23.16) we
extract the value of the angular integral in a d-dimensional euclidean space, for arbitrary
values of d

∫
dΩd =

2πd/2

Γ(d/2)
. (23.17)

The integral in (23.12) is now given by

Id = iµε
∫ 1

0

dx
2πd/2

Γ(d/2)

1

(2π)d

∫ ∞
0

d`E
`d−1E

[`2E + a2 − iε]2

=
iπd/2 µε

(2π)d Γ(d/2)

∫ 1

0

dx

∫ ∞
0

d`2E
(`2E)

d/2−1

[`2E + a2 − iε]2
. (23.18)

Using the properties of beta functions we have

∫ ∞
0

dt
tm−1

(t2 + a2)n
=

1

(a2)n−m
Γ(m) Γ(n−m)

Γ(n)
, (23.19)

we arrive at
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Id = µε
iπd/2

(2π)d Γ(d/2)

∫ 1

0

dx
1

(a2 − iε)2−d/2
Γ(d/2) Γ(2− d/2)

Γ(2)

= µε
iπd/2

(2π)d
Γ(2− d/2)

∫ 1

0

dx
1

(a2)2−d/2
. (23.20)

In terms of ε the result for the d-dimensional integral is now

Id = µε
iπd/2

(2π)d
Γ(ε/2)

∫ 1

0

dx
1

(a2)ε/2
. (23.21)

But we know this integral is divergent. To see this, we notice that the Gamma function
Γ(z) has isolated poles for z = 0,−1,−2, . . . . This means that Id has poles for d =
4, 6, 8, . . . . In particular, we are interested in the d → 4 limit, i.e. ε → 0+. Around this
limit we have the expansion

Γ(ε/2) ' 2

ε
− γE +O(ε) , (23.22)

where γE = 0.5772 . . . is the Eüler-Mascheroni constant. On the other hand, the other
relevant term has the expansion

1

(a2)ε/2
' 1− ε

2
ln a2 +O(ε2) . (23.23)

Finally, we should use

µε = (µ2)ε/2 ' 1 +
2

ε
lnµ2 + . . . . (23.24)

We should be careful when multiplying these factors since the logarithmic term in (23.23),
although suppressed by ε/2, will be lifted by the factor of 2/ε in (23.22). Then

µε Γ(ε/2)
1

(a2)ε/2
' 2

ε
− γE − ln

a2

µ2
+O(ε) . (23.25)

This gives us

Id =
i

16π2

∫ 1

0

dx

(
2

ε
− γE − ln

(m2 − x(1− x)p2)

µ2
+O(ε)

)
, (23.26)
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which diverges as ε → 0, or as d → 4. The one-loop contribution to the s-channel
four-point function is

Γ(p2) =
(−iλ)2

2
(−1) Id

=
iλ2

32π2

∫ 1

0

dx

(
2

ε
− γE − ln

(m2 − x(1− x)p2)

µ2
+O(ε)

)
(23.27)

If we now isolate the divergence by writing

Γ(p2) = Γ(0) + Γ̃(p2) , (23.28)

just as we did in the previous lecture, we obtain

Γ(0) =
iλ2

32π2

(
2

ε
− γE − ln

m2

µ2

)
. (23.29)

By comparing this result with what we obtained using the Pauli-Villars method

Γ(0) ' iλ2

32π2
ln

Λ2

m2
, (23.30)

we can see that the pole in ε → 0 in dimensional regularization can be identified with a
logarithmic divergence with the cutoff Λ by making the replacement

(
2

ε
− γE

)
↔ ln Λ2 . (23.31)

It is straightforward to see that the finite piece of the four-point function is given by

Γ̃(p2) =
iλ

32π2

∫ 1

0

dx ln

(
m2

m2 − x(1− x)p2

)
, (23.32)

which is independent of the arbitrary scale µ and should be in agreement with the one
obtained by the Pauli-Villars method. The dependence of the counterterm δλ on the scale
µ will play an important role when we consider the momentum dependence of renormalized
parameters of a theory. In fact, we will call µ the renormalization scale and we will see
that the coefficient of the logarithm of this scale determines the speed of variation of
couplings with momentum, the β function.
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Next we want to compute the counterterms of the two-point function illustrated in Fig-
ure 23.2. As we did in previous lectures, we write this as

Figure 23.2: The 1PI diagrams contributing to the two-point function to O(λ). The last
diagram corresponds to the counterterms.

−iΣ(p2) =
−iλ

2

∫
d4k

(2π)4
i

k2 −m2
+ i(δzp2 − δm2) . (23.33)

This time we regularize the integral using dimensional regularization.

I
(2)
d ≡ −iλ

2
µε
∫

ddk

(2π)d
i

k2 −m2

=
−iλ

2(2π)d
µε
∫

dΩd

∫ ∞
0

dkE
kd−1E

k2E +m2 − iε
, (23.34)

where in the last step we Wick rotated to euclidean momentum space, and we notice
that due to the fact that there s only one propagator there is no need for a Feynman
parametrization. Putting the integral in the form of a beta function we obtain

I
(2)
d =

−iλ
2(2π)d

2πd/2

Γ(d/2)
µε
∫ ∞
0

(1/2)dk2E
(k2E)d/2−1

k2E +m2 − iε

= µε
−iλπd/2

2(2π)dΓ(d/2)

1

(m2)1−d/2
Γ(d/2) Γ(1− d/2)

Γ(1)

= µε
−iλπd/2

2(2π)d
1

(m2)1−d/2
Γ(1− d/2) , (23.35)

where in the step before last we used the form of the beta function for m = d/2 and
n = 1. The result clearly has poles for d = 4 but also d = 2. In order to make the
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expansion around the four-dimensional divergence more transparent we make use of one
the properties of the gamma functions. They satisfy

z Γ(z) = Γ(z + 1) . (23.36)

Then in our case we can write

(1− d/2) Γ(1− d/2) = Γ(2− d/2) = Γ(ε/2) , (23.37)

so we can make the replacement

Γ(1− d/2) =
Γ(ε/2)

1− d/2
. (23.38)

Finally, we notice that

(m2)1−d/2 = (m2)−1 (m2)ε/2 ' (m2)−1
(

1 +
ε

2
lnm2 + . . .

)
. (23.39)

Then, expanding around d→ 4 limit we obtain

I
(2)
d =

iλ

32π2
m2

(
2

ε
− γE − ln

m2

µ2
+O(ε)

)
(23.40)

Finally, imposing the renormalization condition, e.g. on Σ(p2 = 0), we obtain the mass
counterterm given by

δm2 =
λ

32π2
m2

(
2

ε
− γE − ln

m2

µ2
+O(ε)

)
. (23.41)

Once again, just as for δλ, we notice that the counterterm δm2 depends on the scale µ and
that the coefficient of this logarithm is the same as that for the divergence. As mentioned
above, this will play an important role in determining the renormalization flow of the
parameters of the theory.

If we compare it with the one obtained using Pauli-Villars

(δm2)PV '
λ

32π2
Λ2 , (23.42)
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with Λ the cutoff to be taken to infinity, we see that the structure of the divergence in
the two-point function in dimensional regularization is somewhat different from that of
the four-point function, despite the fact that the divergence looks the same (i.e. it goes
as 2/ε). In this case we seem to need to make the replacement

(
2

ε
− γE

)
↔ Λ2

m2
, (23.43)

in order to match the two answers. This just tells us that we should be careful when trying
to extract information about what kind of divergence occurs in dimensional regularization.
In this sense, we see that in order to better evaluate the degree of sensitivity of a quantity
to the ultraviolet regions of momentum it is always clearer to use a cutoff regularization
method such as Pauli-Villars. On the other hand, dimensional regularization will be much
more practical when making more involved calculations, particularly in gauge theories.
For this reason, this will be the method we will use for the rest of the lectures.

Additional suggested readings

• Gauge Theory of Elementary Particle Physics, by T.-P. Cheng and L. -F. Li, Section
2.3

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Section
10.2.

• Quantum Field Theory, by C. Itzykson and J. Zuber, Section 8.1.2.


