
Lecture 21

Renormalization by Counterterms

Starting from the lagrangian for a real scalar field with quartic self-interactions
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∂µφ0∂
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λ0
4!
φ4
0 , (21.1)

with unrenormalized parameters m2
0, λ0 and the unrenormalized field φ0, we defined the

renormalized parameters m2, λ and φ. First, we start by the field, just as we did in the
previous lecture.

φ = Z
−1/2
φ φ0 . (21.2)

Then, we rewrite (21.1) replacing the renormalized field φ for φ0 to obtain
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We now define

δZφ ≡ Zφ − 1

δm2 ≡ m2
0Zφ −m2

δλ ≡ λ0Z
2
φ − λ , (21.4)

which we can rewrite in a more convenient way as
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Zφ = 1 + δZφ

m2
0Zφ = m2 + δm2

λ0Z
2
φ = λ+ δλ . (21.5)

Replacing (21.5) in (21.3) we obtain
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+
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2
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µφ− 1

2
δm2φ2 − δλ

4!
φ4 , (21.6)

where we see that the first line is the renormalized lagrangian whereas the second line is
what we will call the counterterms. These new terms will result in new Feynman rules
for the theory and will cancel divergencies in the renormalized theory. We have seen (see
lecture 19) that for this theory the degree of divergence of diagrams is given by

D = 4−
∑
f

Ef (sf + 1) (21.7)

where Ef is the number of external lines of the field type f in the diagram and here
sf = 0 for a scalar field. This meant that there are divergences in the two-point function
(Ef = 2 ⇒ D = 2) and in the four-point function (Ef = 4 ⇒ D = 0). The divergences
in the two-point function affect the terms in L quadratic in the fields and there will be
cancelled by the counterterms δZφ and δm2, whereas the ones in the four-point function
impact the quartic term and are canceled by δλ. The cancelation takes place at a given
order in the perturbative expansion in the coupling constant λ. In order to define the
physical parameters we need to impose renormalization conditions. To compute a given
process up to some order in perturbation theory we need to use the Feynman rules that
include the counterterms. These new contributions will ensure that the cancelation takes
place in every process.

21.1 Counterterm Feynman Rules

The Feynman rules of the theory in terms of renormalized parameters are shown below,
and derived from the first line in (21.6).

i

p2 −m2 + iε
,
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−iλ ,

In addition, we now need to derive new Feynman rules from the second line. This results
in

i
(
δZφp

2 − δm2
)
, (21.8)

−iδλ , (21.9)

where the dots indicate the insertion of the counterterm. To understand the form of the
counterterm for the two-point function we should imagine inserting it as one more 1PI
contribution to −iΣ(p2) in the summed propagator, as we did in lecture 20. With the
form (21.8) the propagator now would be

i

p2 −m2 − Σ`(p2) + δZφ p2 − δm2
, (21.10)

where −iΣ`(p
2) is the sum of the actual loop contributions to the two-point function.

Notice that since the mass squared in the propagator is already the renormalized mass,
the divergences in −iΣ`(p

2) will now be canceled exclusively by the counterterms δZφ and
δm2. To implement the program of renormalization by counterterms, we compute any
desired amplitude up to the desired order in λ, including all the counterterms. Divergent
integrals must be regulated, i.e. expressed in terms of an appropriate regulator that
respects the symmetries of the theory. In the next lectures we will specify regularization
procedures. But the regulator is typically either an euclidean momentum cut off Λ, or
some other parameter that exposes the divergences in some limit. The answer of the
calculation initially depends on the couterterms δZφ, δm2 and δλ. These are fixed by
imposing renormalization conditions that result in the cancellation of divergences. The
resulting expression is then independent of the regulator. This procedure removes all
divergences in a renormalizable theory.
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21.2 Fixing δZφ and δm2

These counterterms are fixed by the renormalization of the two-point function. The 1PI
diagrams that need to be summed in order to obtain the propagator (21.10) now include
the counterterm contribution, as shown in Figure 21.1, where we show the 1PI up to O(λ).
In addition to the one-loop diagram we now have to consider the couterterm contribution
to the two-point function as in (21.8) . The sum of the two diagrams is

Figure 21.1: The 1PI diagrams contributing to the two-point function to O(λ). The last
diagram corresponds to the counterterm in (21.8).

−iΣ(p2) =
(−iλ)

2

∫
d4k

(2π)4
i

k2 −m2 + iε
+ i
(
δZφp

2 − δm2
)
. (21.11)

We will impose the renormalization conditions on the propagators

∆F (p) =
i

p2 −m2 − Σ(p2)
, (21.12)

we now we use the renormalized mass parameter m2 from the lagrangian in (21.6) and
Σ(p2) has the expansion

Σ(p2) = Σ(m2) + (p2 −m2) Σ′(m2) + Σ̃(p2) , (21.13)

where the first two terms are divergent, but the last is not. Now, the renormalization
conditions are a little different than before because here we are adding the contributions
of the loop plus those of the counterterms and ger the renormalized propagator. This
means that the renormalization condition now should leave m2 as the pole and the residue
should be unity times i, since the field is already renormalized. This translates into the
conditions

Σ(m2) = 0, Σ′(m2) = 0, (21.14)
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with the first condition ensuring that m2 is the pole of the propagator, whereas the second
one leads to the desired residue of i. We can see from (21.11) that, since the loop integral
does not contain any p2 dependence, the second renormalization condition in (21.14) leads
to δZφ = 0. However, this is only the case at this order in λ. In fact, going to O(λ2) there
will be such dependence in the integral, leading to the more accurate statement

δZφ = 0 +O(λ2) . (21.15)

Finally, we may use the first condition in (21.14) in (21.11) to obtain the mass squared
counterterm

δm2 = −λ
2

∫
d4k

(2π)4)

i

k2 −m2 + iε
. (21.16)

To actually compute δm2 we will need to regulate the integral above. We will do this in
detail in the nexttwo lectures. In any case, the answer will not depend on the details of
the regularization procedure.

21.3 Fixing δλ through the Four-point Function

The renormalization of the four-point function leads to the fixing of the coupling coun-
terterm δλ. In this case the first loop corrections will introduce a momentum dependence
absent at leading order. Let us consider a scattering process in the φ4 theory up to one
loop. The relevant diagrams are shown in Figure 21.2.

Figure 21.2: The diagrams contributing to the four-point amplitude. The leading order,
i.e. O(λ) diagram is followed by the three possible O(λ2) 1PI diagrams. The last diagram
is the counterterm δλ.

The amplitude for scattering two scalars of momenta p1 and p2 into two scalars of momenta
p3 and p4 is
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iA(p1, p2 → p3, p4) = −iλ+ Γ(s) + Γ(t) + Γ(u)− iδλ , (21.17)

where the Mandelstam variables are s = (p1 + p2)
2, t = (p3 − p1)2 and u = (p4 − p1)2.

Since the loop diagrams introduce kinematic dependence, we need once again to choose a
point in order to impose the renormalization condition on the four-point function. This
time we choose the zero-momentum condition, i.e.

s0 = 4m2, t0 = 0, u0 = 0 , (21.18)

which corresponds to p1 = p2 = (m,0). We then impose the renormalization condition

iA(s0, t0, u0) = −iλ , (21.19)

which results in

δλ = −i
(
Γ(4m2) + 2Γ(0)

)
. (21.20)

We can then rewrite the amplitude as

iA(s, t, u) = −iλ+ Γ̃(s) + Γ̃(t) + Γ̃(u) , (21.21)

where the Γ̃’s are finite and satisfy Γ̃(s0) = Γ̃(t0) = Γ̃(u0) = 0. The amplitude in (21.21)
is expressed in terms of the renormalized coupling λ and it has a well defined kinematic
dependence acquired at order λ2 through the finite parts of the loop diagrams. In the
next two lectures we will develop methods to regulate the divergent integrals.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Section
10.2.

• Quantum Field Theory, by C. Itzykson and J. Zuber, Section 8.2.


