
Lecture 20

The Basis of the Renormalization
Program

In order to introduce the main concepts involved in the renormalization process, we start
by studying the correlation functions of a simple theory and derive the necessary elements
to redefine them. Later on, we will develop a formalism that will incorporate all these
steps.

Let us consider the lagrangian of a real scalar field with φ4 self-interactions:

L =
1

2
∂µφ0∂

µφ0 −
1

2
m2

0φ
2
0 −

λ0
4!
φ4
0 , (20.1)

where the subscript 0 in the field, the mass and the coupling denotes the parameters of
the theory before renormalization. The Feynman rules for this theory are the usual, in
particular for the propagator and for the vertex we have

i

p2 −m2
0 + iε

,

−iλ0 ,

in terms of the unrenormalized mass and coupling m0 and λ0. To account for the quantum
corrections, we need to consider the one-particle irreducible (1PI) diagrams. These are
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2 LECTURE 20. THE BASIS OF THE RENORMALIZATION PROGRAM

diagrams that cannot be split into two by just cutting an internal line. Examples of 1PI
diagrams are shown in Figure 20.1. They constitute the building blocks for quantum
corrections. On the other hand, the examples of Figure 20.2 are one-particle reducible
diagrams. They can be thought of as corrections to external legs, or in the case of the
two-point function as repetitions of the 1PI building blocks.

Figure 20.1: Examples of one-particle irreducible diagrams in loop corrections.

We will define 1PI correlation functions as those obtained from exclusively considering
amputated 1PI diagrams1. We will denote the 1PI n-point correlation function in mo-
mentum space as

Γ(n)(p1, . . . , pn) ,

Figure 20.2: Examples of one-particle reducible diagrams in loop corrections.

The reducible diagrams can always be obtained from the product of 1PI diagrams without
having to perform additional integrals. This means that the only divergences we have to
worry about are those in the 1PI diagrams. Once these are absorbed in the renormalization
procedure, there will be no more divergences in the reducible digrams either.

1Since we are computing the momentum-space correlation functions we must strip them from the
external propagators.
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20.1 Separation of Divergences

We will see how to isolate the divergences of the theory. Let us consider first the two-point
function. In momentum space we denote this by

∆F (p) =

∫
d4xeip·x〈0|Tφ0(x)φ0(0)|0〉 , (20.2)

that is, this is the unrenormalized momentum-space propagator. We group all the relevant
1PI diagrams in

≡ −iΣ(p2) ,

where the blob includes all 1PI diagrams contributing to the desired order in perturbation
theory. The total propagator requires that we sum over all the possible products of 1PI
insertions as in Figure 20.3 below.

Figure 20.3: Insertion of the 1PI contributing to the two-point function, resulting in a
geometric series.

The large blob denotes the full propagator to the desired order. This results in

∆F (p) =
i

p2 −m2
0 + iε

+
i

p2 −m2
0 + iε

(
−iΣ(p2)

) i

p2 −m2
0 + iε

+
i

p2 −m2
0 + iε

(
−iΣ(p2)

) i

p2 −m2
0 + iε

(
−iΣ(p2)

) i

p2 −m2
0 + iε

+ . . .

=
i

p2 −m2
0 + iε

{
1

1 + iΣ(p2) i
p2−m2

0+iε

}
, (20.3)
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where in the last equality we summed the series under the assumption that Σ(p2) is
“small”. Thus the corrected propagator can now be written as

∆F (p) =
i

p2 −m2
0 − Σ(p2) + iε

. (20.4)

We can begin to see in (20.4) how is it that the corrections coming from the 1PI diagrams
in Σ(p2) will result in a shift of the mass squared parameter, m2

0, although as we will
see in more detail later, this will not be the only paramater shift in the propagator. The
function Σ(p2) shifts the pole of the propagator renormalizing the mass parameter, as well
as the residue at the pole, resulting in a redefinition of the field itself. But before we do
this, we notice that Σ(p2) is divergent. To leading order in λ0 it is given by the diagram
in Figure 20.4.

Figure 20.4: 1PI contribution to −iΣ(p2) up to order λ0.

This results in

−iΣ(p2) =
−iλ0

2

∫
d4k

(2π)4
i

k2 −m2
0 + iε

, (20.5)

where the factor of 2 in the denominator accounts for the symmetry of the diagram. As
we have seen before, this is quadratically divergent in the UV. It is possible to Taylor
expand −iΣ(p2) about an arbitrary point and show that the divergences concentrate in
the first few terms in the expansion. This will allow us to separate clearly the divergent
and the convergent pieces of the two-point function, and in general of any correlation
function. However, since to this order in λ0 there is no p2 dependence in −iΣ(p2) it is
not obvious how to show this. To understand the separation of the divergences it is more
convenient to study the four-point function.

The one-loop contributions to the four-point function are depicted in Figure 20.5. We
will concentrate on the diagram (a) since the discussion is the same for all three with
only minor kinematic differences. Using the Feynman rules for the φ4 theory we obtain
its contribution as
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Figure 20.5: The 1PI one-loop diagrams contributing to the four-point function. In (a)
p = p1 + p2. For (b) we have p = p1 − p3. Finally, for (c) p = p1 − p4.

Γ(a)(p
2) =

(−iλ0)2

2

∫
d4k

(2π)4
i

k2 −m2
0 + iε

i

(p− k)2 −m2
0 + iε

, (20.6)

where we used p ≡ p1 + p2. Since for this diagram we have p2 = s, we have Γ(a)(p
2) =

Γ(s). As noticed earlier, this integral is logarithmically divergent in the UV. Clearly for
Figure 20.5-(b) we will have the same expression as in (20.6) with the only difference
that p = p1 − p3. Thus, Γ(b)(p

2) = Γ(t). Finally, we have that for the diagram in (c)
the result is the same function in (20.6) but now as function of p2 = (p1 − p4)2 = u, i.e.
Γ(c)(p

2) = Γ(u). Then, the three contributions are given by the same function but with
different argument. In particular the three of them have the same divergent structure.

In order to separate the divergences, we make the observation that taking derivatives
of the correlation functions with respect to external momenta decreases the degree of
divergence. We can see this readily in (20.6). We first notice that

∂Γ(p2)

∂pµ
=
∂Γ(p2)

∂p2
∂p2

∂pµ
=
∂Γ(p2)

∂p2
2pµ , (20.7)

from which we arrive at

∂Γ(p2)

∂p2
=

1

2p2
pµ
∂Γ(p2)

∂pµ
. (20.8)

Applying this expression to (20.6) we have

∂Γ(p2)

∂p2
=
λ20
p2

∫
d4k

(2π)4
(p− k) · p
k2 −m2

0 + iε

1

[(p− k)2 −m2
0 + iε]

2 . (20.9)
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We see that the integral in (20.9) is already convergent in the UV. Additional derivatives
will only result in even more rapidly convergent integrals. As a result we can Taylor
expand Γ(p2) in order to isolate the divergent term. Expanding around p2 = 0

Γ(p2) = a0 + a1p
2 + · · ·+ 1

n!
an(p2)n + . . . , (20.10)

where the coefficients are given by

an =
∂nΓ(p2)

∂(p2)n

∣∣∣∣
p2=0

, (20.11)

As we have seen above, a0 diverges logarithmically, whereas

an, ∀n ≥ 1 , (20.12)

are all finite. Since a0 = Γ(0), we can separate the divergence in the four-point function
by writing

Γ(p2) = Γ(0) + Γ̃(p2) , (20.13)

where Γ̃(p2) is finite and satisfies

Γ̃(0) = 0 . (20.14)

In this way we have separated the logarithmic divergence in the four-point function. In
general, when Taylor expanding n-point functions the divergences will be restricted to the
first few terms of the expansion. We will next apply this to the renormalization of the
two- and four-point functions.

20.2 Renormalization of the Mass and Field Param-

eters

The renormalization procedure applied to the two-point function will result in a redefi-
nition of the mass parameter as well as of the field itself. We start by expanding Σ(p2)
around and arbitrary constant we call m2. Since we start with a quantity that is quadrat-
ically divergent, one derivative will only reduce the degree of divergence, but not enough
to make the integral converge. In other words we write the Taylor expansion as
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Σ(p2) = Σ(m2) + (p2 −m2)Σ′(m2) + Σ̃(p2) , (20.15)

where Σ(m2) is quadratically divergent,

Σ′(m2) =
∂Σ(p2)

∂p2

∣∣∣∣
p2=m2

, (20.16)

is logarithmically divergent, and Σ̃(p2) is finite and satisfies

Σ̃(m2) = 0 , Σ̃′(m2) = 0 . (20.17)

If we now insert (20.15) into the summed propagator in (20.4) we have

∆F (p) =
i

p2 −m2
0 − Σ(m2)− (p2 −m2)Σ′(m2)− Σ̃(p2) + iε

. (20.18)

We want to define the renormalized mass as the pole of the propagator ∆F (p). This
translates into the renormalization condition

m2 ≡ m2
0 + Σ(m2) , (20.19)

which really acts as a definition of m2. This gives us

∆F (p) =
i

(p2 −m2) {1− Σ′(m2)} − Σ̃(p2)
, (20.20)

which is consistent with m2 being the pole of ∆F (p) given that from (20.17) we know that
Σ̃(m2) = 0. We see from (20.19) that since Σ(m2) is UV-divergent, so must be the bare
mass squared m2

0, so as to cancel the divergence and leave just the physical pole mass
m2. But the mass squared parameter is not the only one that gets renormalized. Given
that both Σ(m2) and Σ̃(p2) are given to a certain order in perturbation theory defined by
powers of λ0 (first order in λ0 in this explicit example) we can write

Σ̃(p2) ' Σ̃(p2)
(
1− Σ′(m2)

)
, (20.21)

which means that both sides of (20.21) are equivalent to the order in λ0 we are computing
Σ̃(p2) and Σ′(m2). With this trick we can rewrite (20.20) as
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∆F (p) =
i[

p2 −m2 − Σ̃(p2) + iε
]

(1− Σ′(m2))
, (20.22)

or, defining

Zφ ≡
1

1− Σ′(m2)
' 1 + Σ′(m2) + . . . , (20.23)

we can write as

∆F (p) =
iZφ

p2 −m2 − Σ̃(p2) + iε
. (20.24)

We see that Zφ gives the residue of the propagator at m2. Since Σ′(m2) is UV-divergent,
so it will be Zφ. We can absorb this divergence by a field redefinition:

φ(x) ≡ Z
−1/2
φ φ0(x) , (20.25)

where φ(x) is the renormalized field. In terms of it we can now define a renormalized
propagator as given by

∆r
F (p) =

∫
d4x eip·x 〈0|Tφ(x)φ(0)|0〉

= Z−1φ

∫
d4x eip·x 〈0|Tφ0(x)φ0(0)|0〉 , (20.26)

which results in

∆r
F (p) = Z−1φ ∆F (p) =

i

p2 −m2 − Σ̃(p2) + iε
. (20.27)

The renormalized propagator in (20.27) is finite and it has a pole in the renormalized mass
squared m2, with a residue equal to unity. The factor Zφ is sometimes referred to as the
wave-function renormalization. So we see that the divergences in the loop contributions
to −iΣ(p2) were removed by the renormalization of the mass squared and of the field.
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20.3 Coupling Constant Renormalization

Before we consider the renormalization of the four-point function let us apply the result
from the previous section to a generic n-point function. Using (20.25) the renormalized
n-point function can be written as

G(n)
r (p1, . . . , pn) = Z

−n/2
φ G

(n)
0 (p1, . . . , pn) , (20.28)

where on the right-hand side we have the unrenormalized n-point function. However, if we
want to obtain the amputated 1PI n-point function, on the side of the renormalized one
(the left-hand side in (20.28) ) we need to remove n external propagator renormalizations,
i.e. since

∆r
F (p) = Z−1φ ∆F (p) , (20.29)

we have

Γ(n)
r (p1, . . . , pn)Z−nφ = Z

−n/2
φ Γ

(n)
0 (p1, . . . , pn) , (20.30)

where Γ0(p1, . . . , pn) is the unrenormalized 1PI n-point function. This results in

Γ(n)
r (p1, . . . , pn) = Z

n/2
φ Γ

(n)
0 (p1, . . . , pn) . (20.31)

Turning to the four-point function up to order λ20 the relevant 1PI diagrams are the tree-
level one at the beginning of this chapter, and the one-loop diagrams in Figure 20.5. We
can write then

Γ
(4)
0 (s, t, u) = −iλ0 + Γ(s) + Γ(t) + Γ(u) , (20.32)

with the last three terms corresponding to Figures 20.5-(a), (b) and (c) respectively, and
they are given by (20.6). Since the loop corrections make the four-point amplitude depend
on kinematics, the renormalization condition that we must impose in order to define the
physical coupling must be at an arbitrary kinematic point. For instance, if we choose a
symmetric point s0, t0, u0 such that

s0 = t0 = u0 , (20.33)

then since s+ t+ u = 4m2, we have that
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s0 = t0 = u0 =
4

3
m2 . (20.34)

At this specific point we choose to define the physical coupling constant by the renormal-
ization condition

Γ(4)
r (s0, t0, u0) ≡ −iλ , (20.35)

which is really a definition of the renormalized coupling λ. In (20.35) we have the renor-
malized four-point function at the chosen kinematic point defining the renormalized cou-
pling constant. If we now go back to the unrenormalized four-point function (20.32) and
we separate the divergent pieces, we can write it as

Γ
(4)
0 (s, t, u) = −iλ0 + Γ(s0) + Γ̃(s) + Γ(t0) + Γ̃(t) + Γ(u0) + Γ̃(u)

= −iλ0 + 3Γ(s0) + Γ̃(s) + Γ̃(t) + Γ̃(u) . (20.36)

Since the last three terms of (20.36) are finite we want to single out the first two so as to
absorb the divergences in Γ(s0). For this purpose we define

−iZ−1λ λ0 ≡ −iλ0 + 3Γ(s0) . (20.37)

To express the renormalized four-point function we make use of (20.31) so that

Γ(4)
r (s, t, u) = Z2

φ Γ0(s, t, u) . (20.38)

Then we have

Γ(4)
r (s0, t0, u0) = Z2

φ Γ
(4)
0 (s0, t0, u0)

−iλ = Z2
φ

(
−iZ−1λ λ0

)
, (20.39)

where in the second line we used the renormalization condition (20.35) on the left-hand
side, and (20.36) and (20.37) on the right-hand side, supplemented by the fact that

Γ̃(s0) = Γ̃(t0) = Γ̃(u0) = 0 . (20.40)

Comparing both sides we arrive at the expression
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λ = Z2
φ Z
−1
λ λ0 , (20.41)

for the renormalized coupling. The renormalization condition (20.35) imposes that the
coupling constant λ is physical, i.e. is given by the value of the measured amplitude at
some arbitrary point. This means that the divergences in (20.37) present in the Γ(s0)’s
must be canceled by λ0. Finally, we can rewrite (20.38) as

Γ(4)
r (s, t, u) = −iZ2

φZ
−1
λ λ0 + Z2

φ

{
Γ̃(s) + Γ̃(t) + Γ̃(u)

}
= −iλ+ Z2

φ

{
Γ̃(s) + Γ̃(t) + Γ̃(u)

}
. (20.42)

However, since in perturbation theory we always have

Zφ ' 1 +O(λ0)

Γ̃(p2) ' O(λ20) , (20.43)

we can always express the renormalized four-point function as

Γ(4)
r (s, t, u) = −iλ+ Γ̃(s) + Γ̃(t) + Γ̃(u) +O(λ30) , (20.44)

which is finite. We see from (20.44) that the four-point amplitude carries the information
of the loop effects in the form of the s, t, u dependence acquired from them. As we can see
from this procedure, the choice of the point where the renormalization condition defines
the coupling λ is arbitrary. But the final expression will always be the same. For different
renormalization points, we will have different values of λ, but the functional dependence
will be the same.

20.4 The Renormalization Program

We have seen that the renormalized theory in terms of the parameters

m2 = m2
0 + δm2

φ = Z
−1/2
φ φ0

λ = Z2
φ Z
−1
λ λ0 , (20.45)
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gives us finite two and four-point 1PI correlation functions. This also applies to reducible
but connected diagrams as the one in Figure 20.6.

Figure 20.6: Reducible contribution to the four-point function.

This contribution can be factorized as

∆r
F (p)× Γ(4)

r (s, t, u) , (20.46)

which is finite. There are no new divergences in this diagram per se.

Figure 20.7: Reducible contribution to the six-point function.

The same can be said of the contribution to the six-point function depicted in Figure 20.7.
However, in both cases, there are subdivergences associated with the infinities in the two-or
the four-point functions. Since these correlation functions have been already renormalized,
then all other correlation functions of the theory are now well defined and finite. In
general, the result of the renormalization procedure gives us renormalized correlation
functions, i.e. they depend on the renormalized parameters, in our example m2, λ and
the renormalized field. Then we can write the formal relation

G(n)
r (p1, . . . , pn,m

2, λ) = Z
−n/2
φ G

(n)
0 (p1, . . . , pn,m

2
0, λ0,Λ) , (20.47)

where in general the unrenormalized correlation functions will depend not only on the
unrenormalized parameters, but also on a regulator, which we generically dubbed Λ.
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In what follows we will introduce a formalism that incorporates all of this in a more
systematic way, renormalization by counterterms.

Additional suggested readings

• Gauge Theory of Elementary Particle Physics, by T.-P. Cheng and L. -F. Li, Section
2.1.

• Quantum Field Theory, by C. Itzykson and J. Zuber, see discussions in Sections
8.1 and 8.2.

• Quantum Field Theory in a Nutshell, by A. Zee. Sections III.1 to III.3.


