
Lecture 17

Gauge Theories in the Functional
Integral

As we saw in the previous lecture, the quantization of gauge fields is more subtle than
what we anticipated. The main reason is gauge invariance, or the redundancy that it
brings. The problem is more clearly identified in the functional integral formulation.
In this part of the course we will restrict ourselves to abelian gauge theories, or U(1)
gauge theories. But the functional integral approach will come in handy when quantizing
non-abelian gauge theories.

17.1 Gauge Redundancy in the Functional Integral

The action for the gauge fields in a U(1) gauge theory is

S[Aµ] = −1

4

∫
d4xFµνF

µν , (17.1)

where as usual we have

Fµν = ∂µAν − ∂νAµ , (17.2)

is the gauge invariant gauge tensor. Writing the action out in terms of Aµ and its deriva-
tives we have

S[Aµ] = −1

2

∫
d4x {∂µAν∂µAν − ∂µAν∂νAν}

=
1

2

∫
d4xAν

(
gµν∂2 − ∂µ∂ν

)
Aµ , (17.3)
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where to obtain the last equality we integrated by parts both terms in the first equality.
So we can write the action as a quadratic form

S[Aµ] =
1

2

∫
d4xAν Oµν Aµ , (17.4)

with

Oµν ≡ gµν∂2 − ∂µ∂ν . (17.5)

This means that we can use our usual trick to obtain the generating functional of the
theory. The generating functional in the presence of a source linearly coupled to Aµ is

Z[Jµ] = N

∫
DAµeiS[Aµ]+i

∫
d4x Jµ(x)Aµ(x) . (17.6)

Then we know that the fact that the action is quadratic in the fields allows us to make
a change of variables in Aµ(x) in order to decouple the source Jµ(x). The answer for the
generating functional should be

Z[Jµ] = Z[0] e−1/2
∫
d4x d4y Jµ(x)DFµν(x−y) Jν(y) , (17.7)

where the two-point function DFµν(x− y) must be a Green function of the operator Oµν ,
i.e it must satisfy

Oµνx DFνρ(x− y) = iδ(4)(x− y)δµρ . (17.8)

This appears to solve the problem. Just deriving twice the expression above we can obtain
the gauge boson propagator, i.e. DFµν(x − y). However, it turns out that this does not
work since Oµν does not have an inverse. To see this we observe that taking a derivative
on Oµν results in

∂µxOµνx DFνρ(x− y) = ∂µx
(
gµν∂2

x − ∂µx∂νx
)
DFνρ(x− y)

= 0×DFνρ(x− y) = ∂µxiδ
(4)(x− y)δµρ , (17.9)

which can only be satisfied if DFνρ(x−y) is infinite. Another way to see what is happening
is to consider an arbitrary function α(x). Then we can see that
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Oµν ∂να(x) = 0 , (17.10)

which means that ∂να(x) is an eigenfunction of Oµν with zero eigenvalue. Once again,
this means that Oµν cannot be inverted.

The origin of the problem is gauge invariance. Under a gauge transformation, the gauge
field changes as

Aµ(x) −→ A′µ(x) = Aµ(x) +
1

e
∂µα(x) , (17.11)

for an arbitrary function α(x), leaving the action invariant. That is

S[A′µ(x)] = S[Aµ(x)] . (17.12)

As we will see below, this poses a problem since the functional integration treats Aµ(x)
and A′µ(x) as two distinct field configurations that must be independently considered.
However this is not correct since the action is the same for both configurations. That is
field configurations that are related by gauge transformations are not physically distinct
and should not be counted separately in the functional integration.

To proceed we will divide the field configurations into two: those not connected by gauge
transformations, call them Āµ(x), and those that can be reach from these by a gauge
transformation characterized by a function α(x). Thus, the function integral over all the
gauge field configurations can be written as

∫
DAµeiS[Aµ] =

∫
DĀµ eiS[Āµ]

∫
Dα , (17.13)

where we have split the gauge field configurations by integrating over the inequivalent
gauge fields Āµ and over all the possible functions α(x) that can be used to generate other
configurations from them. We can see in (17.13) that since the action is invariant under
gauge transformations, these will not generate additional terms in the exponential. This
means that the integration over the α(x) is not exponentially regulated. In other words,
the gauge field configurations that can be accessed via gauge transformations are not only
physically equivalent to the original ones, but they result in unweighted contributions to
the functional integral. The integral over α(x) is infinite, or not well defined. In order
to properly quantize the gauge theory we will need to only count the inequivalent gauge
field configurations Āµ(x).
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17.2 The Fadeev-Popov Method

To separate the unphysical degrees of freedom accessible through gauge transformations
we will use a trick due to Fadeev and Popov. First, we will consider an example with a
discrete set of integration variables in order to introduce the method. Let us consider an
N ×N matrix A, and define the functional

Z[A] =

[
N∏
i=1

∫ +∞

−∞
dxi

]
e−

∑
j,k xjAjkxk . (17.14)

The matrix A can be diagonalized by a linear transformation R as in

Adiag. = RAR−1 , (17.15)

where R defines new coordinates by

y = Rx

or

yi = Rij xj (17.16)

where in the last equality we assumed that repeated indexes as summed over. Then, the
functional in (17.14) can be written as

Z[A] =

[
N∏
i=1

∫ +∞

−∞
dyi

]
e−

∑
k,` ykA

diag.
k` y`

=

[
N∏
i=1

∫ +∞

−∞
dyi

]
e−

∑
k y

2
kA

diag.
kk

=
N∏
i=1

(
π

Adiag.
ii

)1/2

= πN/2 [detA]−1/2 , (17.17)

where we have used the fact that det [R] = 1.

Now let us assume that some of the eigenvalues of A are zero. Clearly this is analogous the
situation in the gauge field functional integral where the operator Oµν had eigenfunctions
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of zero eigenvalues as seen in (17.10). For convenience, let us assume that the last n
eigenvalues of A vanish. That is

Adiag.
kk = 0, ∀ N − n+ 1 ≤ k ≤ N , (17.18)

which means that we can rewrite (17.17) as

Z[A] =

[
N−n∏
i=1

∫ +∞

−∞
dyie

−y2iA
diag.
ii

]
×

[
N∏

j=N−n+1

∫ +∞

−∞
dyi

]
, (17.19)

where to get the second factor we used (17.18). The expression (17.19) is analogous to
(17.13) in the function integral for gauge fields. The integrals in the second factor of this
expression are all divergent as they are not suppressed by exponentials. This divergences
are also reflected in the fact that

detA −→ 0 , (17.20)

in (17.17) due to the presence of zero eigenvalues. In this example is trivial to separate
the finite part of the functional integral by restricting ourselves to the non-vanishing
eigenvalues. That is the finite part of the functional integral in (17.19) is simply

Zf [A] =

[
N−n∏
i=1

∫ +∞

−∞
dyie

−y2iA
diag.
ii

]
, (17.21)

Since this is analogous to the first factor in the functional integral (17.13), the integral
over the inequivalent and physically relevant field configurations, it would be interesting
to try to write down (17.21) in a way that did not imply an apriori separation of Āµ
from the gauge redundant field configurations. To implement this in our matrix example
would mean to integrate over all the indices from i = 1 to N , but somehow avoiding the
infinities. For this purpose we define new variables zi by

zi =


yi, ∀ 1 ≤ i ≤ N − n

anything ∀ N − n+ 1 ≤ i ≤ N
(17.22)

such that we can write the finite part of the functional integral as an integral over all the
indices, even those corresponding to zero A eigenvalues. To do this we write
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Zf [A] =

[
N∏
i=1

∫
dzi

]
δ(zN−n+1) . . . δ(zN−1)δ(zN)e−

∑
k,` zkAk`z` , (17.23)

where the δ functions in (17.23) turn the infinite integrals of the second factor in (17.19)
into unity. In this way we selected the finite part of the integral only, but we are still,
at least formally, integrating over all the variables. As a last step we can go back to our
original variables, xi, in which A was generically non-diagonal. Then the finite functional
integral can be finally written as

Zf [A] =

[
N∏
i=1

∫
dxi

]
det

∣∣∣∣ ∂zi∂xj

∣∣∣∣ ∏
j=N−n+1

δ(zj(x)) e−
∑
k,` xkAk`x` , (17.24)

where the factor of

det

∣∣∣∣ ∂zi∂xj

∣∣∣∣ , (17.25)

corresponds to the Jacobian of the transformation from the z to the x variables.

We can apply the result of (17.24) to our functional integral over the gauge fields (17.13).
Since we only want to compute the integral over the gauge inequivalent fields, i.e. the
first factor in (17.13), we write

Zf [Aµ] =

∫
DAµ det

[
δG

δα

]
δ (G[Aµ]) eiS[Aµ] . (17.26)

Here the α(x) are the parameters of the gauge transformations, and G[Aµ(x)] are function-
als that vanish for a certain type of configuration Aµ(x). These are called gauge fixing
functionals and they have the role of removing the gauge redundancy. The functional
derivative

δG[Aµ(x)]

δα(x)
, (17.27)

gives the response of G[Aµ(x)] to changes in the gauge parameter function α(x). Its
determinant is analogous to the Jacobian of the z → x transformation in our matrix
example.

To see how this works let us start with a familiar example of gauge fixing. We choose
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G[Aµ] = ∂µA
µ − κ , (17.28)

with κ an arbitrary constant. Under the gauge transformation

Aµ −→ Aµ +
1

e
∂µα , (17.29)

we have

G[Aµ] −→ ∂µA
µ +

1

e
∂2α− κ , (17.30)

which results in

δG[Aµ]

δα
=

1

e
∂2 . (17.31)

We see that the functional derivative giving the response of the gauge fixing functional
is an operator that does not depend on the gauge field Aµ(x). Independently of how to
evaluate its determinant, the important point is that it can be taken outside the functional
integral (17.26) so as to become part of the normalization. Since the normalization of the
generating functional is not important, then we see that the determinant in this case is
innocuos. This is always the case in abelian gauge theories. As we will see later in the
course, non-abelian gauge theories will have additional dependence on the gauge fields
appearing in the gauge transformation. This will result in a non-trivial dependence of the
determinant in (17.26) on the gauge fields being integrated, and in the need to introduce
new (albeit non-physical) degrees of freedom in the quantization of non-abelian gauge
theories. But for now, we do not have to worry about the determinant.

Then, we can write down the generating functional over the gauge fields in the presence
of a linearly coupled vector source as

Z[Jµ] = N

∫
DAµ δ (∂µA

µ − κ) ei
∫
d4x{1/2Aµ(gµν∂2−∂µ∂ν)Aν+JµAµ} , (17.32)

where we have written out the operator Oµν explicitly in order to apply the condition in
the delta function. Once this is done we obtain

Z[Jµ] = N

∫
DAµ ei

∫
d4x{1/2Aµgµν∂2Aν+JµAµ} , (17.33)

where using the condition inside the delta function eliminates the second term of Oµν .
Now we can write our usual solution,
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Z[Jµ] = Z[0] e−
1
2

∫
d4xd4yJµ(x)DµνF (x−y)Jν(y) , (17.34)

where now Dµν
F (x − y) must be a Green function of the Dalembertian operator gµν∂2.

That is

gµν∂2
xDFνρ(x− y) = iδ(4)(x− y) δµρ , . (17.35)

In momentum space, the solution is clearly given by

DFµν(x− y) =

∫
d4k

(2π)4
e−ik·(x−y) −igµν

k2 + iε
. (17.36)

This is then the gauge boson propagator with this particular choice of gauge fixing func-
tion. It is called the Feynman gauge.

More generally, we can assume that the gauge fixing condition is

G[Aµ(x)] = ∂µA
µ − κ(x) , (17.37)

that is elevating κ to a function. We can think of κ(x) as if it was a field to be integrated
over in the functional integral. If we were to introduce κ(x), we would add a quadratic
term on it so as to give just an innocuos shift in the normalization. Something like

∫
Dκ e−i

∫
d4x

κ2(x)
2ξ , (17.38)

where ξ is an arbitrary constant. But in our case, since there is a delta function involving
κ(x), we will have

Z[Jµ] = N

∫
DAµDκ δ(∂µAµ − κ(x)) ei

∫
d4x{1/2Aµ(gµν∂2−∂µ∂ν)Aν−(1/2ξ)κ2(x)+Jµ(x)Aµ(x)}

= N

∫
DAµei

∫
d4x{1/2Aµ(gµν∂2−∂µ∂ν)Aν−(1/2ξ)(∂µAµ)2+Jµ(x)Aµ(x)} . (17.39)

Again we have a quadratic form that we can integrate making the usual change of variables
in Aµ(x). The operator in the quadratic form in the gauge fields is now

Õµν = gµν∂2 −
(

1− 1

ξ

)
∂µ∂ν , (17.40)
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where we integrated by parts the term depending on ξ in order to have the desired
quadratic form. In this way, if we now write (17.34) for the solution for the generating
functional, the two-point function in it must be a Green function of Õµν , i.e.

Õµνx DFνρ(x− y) = iδ(4)(x− y) δµρ . (17.41)

If we express the two-point function in terms of its Fourier transform D̂Fνρ(k) as

DFνρ(x− y) =

∫
d4k

(2π)4
D̂Fνρ(k) e−ik·(x−y) , (17.42)

Applying the operator in the integrand in (17.42) we obtain

[
−k2gµν +

(
1− 1

ξ

)
kµkν

]
D̂Fνρ(k) = iδµρ . (17.43)

In order to invert the above expression and obtain the propagator in momentum space
we write the most general form it can have as a function of momentum. This is

D̂Fνρ(k) = A(k2)gνρ +B(k2)kνkρ , (17.44)

where the coefficients A and B are functions of the only Lorentz invariant, k2. Inserting
this in (17.43) and solving for the coefficients we arrive at

D̂Fνρ(k) = − i

k2

[
gνρ − (1− ξ) kνkρ

k2

]
. (17.45)

This is the gauge boson propagator in the so-called Rξ gauge, for arbitrary values of ξ.
Choosing ξ we fix the gauge. For instance, with the ξ = 1 we obtain the propagator of
(17.36). But in many cases other choices may be more convenient. The choice ξ = 0 is
called the Landau gauge. In general we will be using ξ = 1.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
9.4.

• Quantum Field Theory, by C. Itzykson and J. Zuber, Chapter 3.2
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• Quantum Field Theory , by M. Srednicki, Chapter 58.


