
Lecture 16

Gauge Fields

In this section we will introduce vector fields. Although it is generically possible to write
the action for a theory with such fields, it turns out that these generic theories are not
well defined unless the vector fields are gauge fields, i.e. vector fields associated with a
local symmetry. We will eventually show this relation further along our course. For now,
let us introduce gauge fields as a consequence of gauge invariance. We will start with a
fermion theory so as to derive quantum electrodynamics.

16.1 Gauge Invariance

Let us consider the lagrangian for a free fermion of mass m

L = ψ̄(i 6∂ −m)ψ . (16.1)

This is invariant under the global U(1) transformation1 defined by

ψ(x) −→ eiα ψ(x) ,

ψ̄(x) −→ e−iα ψ̄(x) , (16.2)

where α is a real constant. The conserved charge associated with these symmetry trans-
formations is fermion number: +1 for fermions, −1 for antifermions.

But what if we want local U(1) invariance, i.e. what if α = α(x) is a function of the
spacetime position ? The local transformation now reads

1A unitary transformation determined by one parameter.
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ψ(x) −→ eiα(x) ψ(x) ,

ψ̄(x) −→ e−iα(x) ψ̄(x) , (16.3)

which leads to a transformation of the lagrangian as

L → L′ = L = ψ̄(i 6∂ −m)ψ − ∂µα(x) ψ̄γµψ 6= L . (16.4)

From (16.4) we see that the local or gauge transformation (16.3) does not leave the
lagrangian (16.1) invariant. In order to obtain a theory invariant under these local trans-
formations we will need to add a new field that also transforms in some way that depends
on α(x) and whose transformation cancels the extra term that appears in (16.4). One
way to do this is to define a covariant derivative on ψ(x), a generalization of the normal
derivative. We write

L = ψ̄ (i 6D −m)ψ , (16.5)

where we defined the covariant derivative Dµψ(x) so that it must transform as the field
ψ(x) in order for (16.5) to be invariant, i.e. under the transformations (16.3) it must
transform as

Dµψ(x) −→ eiα(x)Dµψ(x) . (16.6)

Clearly, we can see that if (16.6) is satisfied at the same time as (16.3) then (16.5) is
invariant. Next, we write the covariant derivative Dµψ(x) by introducing a vector field as

Dµψ(x) ≡ (∂µ + ieAµ(x)) ψ(x) , (16.7)

where e is a constant. Then, it can be verified that in order for the covariant derivative
defined in (16.7) to satisfy (16.6) the vector field Aµ(x) must transform as

Aµ(x) −→ Aµ(x)− 1

e
∂µα(x) . (16.8)

We notice in passing that the vector field Aµ(x) must be real. This is a consequence of
the fact that the gauge parameter α(x) is real. Thus, to summarize, the theory in (16.5)
is invariant under the gauge or local U(1) transformations
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ψ(x) −→ eiα(x) ψ(x) ,

ψ̄(x) −→ e−iα(x) ψ̄(x) ,

Aµ(x) −→ Aµ(x)− 1

e
∂µα(x) , (16.9)

with the covariant derivative defined by (16.7). Finally, if the gauge field Aµ(x) is to be
a dynamical degree of freedom, we need appropriate quadratic terms in it, i.e. a kinetic
term and a mass term. A kinetic term that is trivially invariant under the transformations
(16.8) is built from the contraction of

Fµν ≡ ∂µAν − ∂νAµ , (16.10)

with itself, since the tensor Fµν is invariant. Furthermore, a mass term for Aµ(x) must
be something like

m2
AAµA

µ . (16.11)

But since this is clearly not gauge invariant, we must assume that mA = 0. Thus a
gauge field must have zero mass in order to respect gauge invariance. Although there are
exceptions to this statement, they all correspond to the case when the mass is generated
dynamically via a scalar field coupled to Aµ(x) obtaining a non-zero vacuum expectation
value. We will study this case in the second part of this course. For now, gauge invariance
means zero mass for the gauge fields. Then, the complete theory that is U(1) gauge
invariant is

L = ψ̄ (i 6D −m)ψ − 1

4
FµνF

µν

= ψ̄ (i 6∂ −m)ψ − eAµψ̄γµψ −
1

4
FµνF

µν , (16.12)

where in the last equality we can see that the gauge field Aµ(x) interacts with the fermion
current with a coupling e. The factor of −1/4 in front of the gauge field kinetic term is a
convenient choice of normalization which results in Fµν being the electromagnetic stress
tensor in the case of quantum electrodynamics (QED). In fact, this lagrangian is the basis
for QED, where ψ(x) is the charged electron field and Aµ(x) is identified with the photon.
The next step in order to obtain QED as a quantum field theory would be to quantize
the gauge field Aµ(x).
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16.2 Gauge Fields and Quantization

From the lagrangian for the gauge fields

L = −1

4
FµνF

µν , (16.13)

we can derive the equations of motion (Euler-Lagrange)

∂2Aµ − ∂µ (∂νA
ν) = 0 , (16.14)

As usual in the classical case, if we choose the Lorentz condition

∂µA
µ = 0 , (16.15)

we obtain

∂2Aµ = 0 . (16.16)

Thus, imposing the Lorentz condition (16.15) gives us a simple equation with plane wave
solutions, a massless Klein-Gordon equation for each component of the four-vector Aµ(x).
Naively, we would then expand Aµ(x) in these solutions and quantize by imposing com-
mutation relations between Aµ(x) and its conjugate momentum πµ(x). From (16.13) we
obtain the form of the conjugate momentum as

πµ(x) =
∂L

∂(∂0Aµ)
= F µ0 . (16.17)

However, from (16.17) it is clear that there is a problem with the time component of πµ(x)
coming from the fact that F µν is antisymmetric. We have that

π0(x) = 0 , (16.18)

meaning that it will not be possible to impose a quantization condition on A0(x). We can
get around this by adding a term to the lagrangian as

L = −1

4
FµνF

µν − c(∂µAµ)2 , (16.19)

where c is a arbitrary real constant. Now the equations of motion are
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∂2Aµ + (c− 1)∂µ(∂νA
ν) = 0 . (16.20)

We can see that there are two ways of obtaining (16.16): either by using the Lorentz
condition or by choosing c = 1. But now the second choice also allows us to define a
non-zero conjugate momentum of A0(x) since now

πµ(x) = F µ0 − cgµ0(∂νAν) , (16.21)

which results in

π0(x) = −c(∂νAν) . (16.22)

So choosing c = 1 allows us to carry out the canonical quantization procedure. This is
called the Feynman gauge. But, as we will see below, the upshot is that now we will have
non-physical degrees of freedom.

To proceed with the quantization, we start by expanding the field Aµ(x) in momentum
space. The most general solution to (16.16) can be written as

Aµ(x) =

∫
d3k

(2π)3
√

2Ek

3∑
λ=0

{
a
(λ)
k ε(λ)µ e−ik·x + a

†(λ)
k ε∗(λ)µ e+ik·x

}
, (16.23)

where we have used the fact that Aµ(x) must be a real field, and the ε
(λ)
µ for λ = 0, 1, 2, 3

form a basis for a general expansion of any four-vector, the so-called polarization vectors.
If we could use the Lorentz condition (16.15) we could eliminate one of the polarizations
through

kµε(λ)µ = 0 , (16.24)

In particular, using gauge invariance we can always eliminate the polarization with time
components. This is desirable for the quantization procedure given that in its presence
there appear negative norm states. To see this let us guess the form of 〈0|TAµ(x)Aν(y)|0〉 ,
which should be the gauge boson propagator. Since each component of Aµ(x) obeys the
massless Klein-Gordon equation all we lack to write it is to guess its tensor form: it should
be an isotropic second rank tensor. Let us try gµν . We then write

〈0|TAµ(x)Aν(y)|0〉 =

∫
d4q

(2π)4
−igµν
q2 + iε

e−iq·(x−y) . (16.25)

To understand the sign choice we notice that doing the contour integral in q0 we obtain
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〈0|TAµ(x)Aν(y)|0〉 =

∫
d3q

(2π)3
−gµν
2Eq

e−iq·(x−y) . (16.26)

If we now take x→ y (but with the limit x0 → y0 from the positive side) and take µ = ν,
then the quantity in (16.26) becomes the norm of the state

Aµ(x)|0〉 . (16.27)

We want states associated with the physical polarizations of real photons, which must be
spatial in nature, e.g. Ai(x) for i = 1, 2, to have positive norm. This forces us to choose
the minus sign in front of gµν in (16.25). But at the same time this means that the sate

A0(x)|0〉 , (16.28)

must have negative norm. This sounds troublesome. Although we will see later that these
states are not really produced in physical processes, they do complicate the quantization
procedure. For instance, it is possible to work around this by making specific gauge
choices, but they all break Lorentz invariance. We will take a different approach and
derive the photon propagator using functional methods.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
4.8.

• Quantum Field Theory, by C. Itzykson and J. Zuber, Chapter 3.2

• The Quantum Theory of Fields, Vol. I, by S. Weinberg, Section 8.1 to 8.3.


