
Lecture 15

Cross Sections: A Simple Example
in Yukawa Theory

We will complete the path from a lagrangian to observables by computing the cross section
for a spacific process in Yukawa theory. We will choose an example that minimizes the
amount of computation in favor of showing the important steps of the calculation. For this
purpose we will assume that there are two different fermions, χ and ψ, with mχ � mψ.
We will the assume that the lagrangian is

L = χ̄(i 6∂ −mχ)χ+ ψ̄(i 6∂ −mψ)ψ − gχ̄χφ− gψ̄ψφ

+
1

2
∂µφ∂µφ−

1

2
µ2φ2 + . . . (15.1)

where the dots denote terms depending on powers of φ such as the tadpole, or φ3 or φ4,
which are inevitably generated by fermion loops. But we will not make use of any of them
in this chapter given that we will work in lowest order in perturbation theory. But before
we go on and compute the cross section, we will digress and discuss some general aspects
of lagrangians and dimensions.

15.1 Dimensional Analysis (Digression)

Since the Yukawa lagrangian in (15.1) is full of elements (fermion and scalar fields, cou-
plings in interaction terms) this is a good time for us to pause and talk about units (yes,
units!). It turns out that dimensional analysis is a very helpful tool in quantum field the-
ory. This will be starkly clear when we start studying renormalization. In the meantime,
we introduce a few of the concepts here since at the end of this lecture we will already
see some of their consequences in action. We start with the simple observation that the
action S has no dimensions (remember here we are using the unit system with h̄ = 1 and
c = 1). Thus, since
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S =

∫
d4xL , (15.2)

we see that every term in the lagrangian density L must have units of length to the minus
fourth power or, alternatively, energy to the fourth power:

[L] = L−4 = E4 , (15.3)

where the squared brakets above return the units of the argument. Let us consider the
lagrangian in (15.1). In order to understand the units of every element in it, we start
with the one parameter we know: the mass of any given field must have units of energy.
So we have that, since [µ] = [mχ] = [µψ] = E, we have that

[φ] = E , [ψ] = [χ] = E3/2 . (15.4)

As you can see, this is a general result: scalar fields have dimension 1 and fermions
dimension 3/2 in units of energy, so that their mass terms have the appropriate dimension
four. We see that kinetic terms are also consistent with this assignments since derivatives
have also dimension one:

[∂µ] = [
∂

∂xµ
] = L−1 = E . (15.5)

Armed with this information we can now look at the interaction terms in any lagrangian.
For instance, an interaction term such as

− λ
4!
φ4 , (15.6)

that we have been considering, corresponds to the coupling λ being dimensionless, i.e.

[λ] = E0 . (15.7)

Similarly, if we consider the fermion-scalar coupling −gφψ̄ψ, we conclude that

[g] = E0, (15.8)

i.e. g is also dimensionless. We see that the couplings that correspond to coefficients of
terms in the lagrangian of dimension four, are always dimensionless, whereas if the terms
have dimensions smaller than four, the coefficient will have positive energy dimensions
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(e.g. the mass term), and finally if the term in question has dimensions greater than four
its coefficient will have negative energy dimensions. An example of one this would be a
four-fermion operator such as

ψ̄ψ ψ̄ψ , χ̄χ χ̄χ , ψ̄ψ χ̄χ . (15.9)

These operators are of dimension six. We could imagine obtaining them from (15.1) if
we consider the case with µ� mψ,mχ and much larger than the energy of the processes
being considered. Then we can imagine integrating out the field φ which would result in
the operators in (15.9) having a coefficient given by

− g
2

µ2
, (15.10)

which, as advertised, has energy dimensions E−2. In general, the coefficient of a given
operator of dimensions dO in the lagrangian has energy dimensions given by

E4−dO . (15.11)

As we will see in detail in a few lectures, the dimension of the operator in the lagrangian
determines whether or not this is an operator that is renormalizable (dimension four or di-
mensionless coefficient), super-renormalizable (dimension less than four or coefficient with
positive energy dimensions) ou non-renormalizable (dimension greater than four or coeffi-
cient of negative energy dimensions). A term in the lagrangian is deemed renormalizable
if, when we consider the effects of loop corrections generated by this term, they generate
a finite number of distinct divergencies. This will mean that these can be absorbed by
the redefinition of a finite number of parameters of the theory.

In contrast, terms with dimensions greater than four will require an infinite number of
redefinitions, i.e. an infinite number of parameters. This does not mean that theories
containing non-renormalizable terms are of no use. But they are of limited use, where
the limitation is to low energies. In particular, we can ignore non-renormalizable terms
in a lagrangian if we imagine that the energy scales suppressing the coefficients of these
higher-dimensional operators are very large compared with the scales of interest. In this
way, we can concentrate in a finite number of terms in L. There are infinitely many
non-renormalizable terms we can write, but by ignoring them we are assuming that their
effects are negligible compared to the ones coming from the renormalizable operators.
We will discuss all of these questions in great detail in a few lectures. However, when
computing cross sections of some processes using (15.1), we will be able to already see the
consequences of non-renormalizability at high energies through the violation of unitarity.
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15.2 Computing the Amplitude

Going back to the theory described by (15.1), we would like to compute the cross section
for the scattering process χχ̄→ ψψ̄, to leading order in perturbation theory. This will not
require that we consider any of the φ-dependent terms denoted in dots in (15.1). In order
to obtain the amplitude for this process we will have to first draw all possible Feynman
diagrams. It turns put that there is only one and it is shown in Figure 15.1.

Figure 15.1: Feynman diagram in momentum space contributing to χχ̄ → ψψ̄ in lowest
order in g in the theory described by the lagrangian in (15.1).

The reason why this is the only diagram to this order is that the lagrangian in (15.1)
respects two separate global U(1) symmetries: one for χ and another one for ψ. That is

χ → eiαχ ,

ψ → eiβψ ,

where α and β are independent constants. This resutls in two separately conserved
charges Qχ and Qψ which forbid the vertices of the type χ̄ψφ that violate both charge
conservations.

15.3 Squaring the Amplitude

Going back to the diagram of Figure 15.1, we can write the amplitude using the Feynman
rules for Yukawa theory derived in the previous chapter. The amplitude is given by

iA = ūr
′

c (p′)vs
′

c (k′) (−ig)
i

q2 − µ2
(−ig) v̄sa(k)ura(p) , (15.12)

where we can see a factor of (−ig) at each vertex, the scalar propagator, and the external
spinors for fermions and antifermions according to the rules derived earlier. Momentum
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conservation fixes the value of the momentum flowing through the scalar propagator to
q = P +K = P ′ +K ′. To compute the squared of the amplitude we will need

−iA† = (+ig)2ūrb(p)v
s
b(k)

−i
q2 − µ2

v̄s
′

d (k′)ur
′

d (p′) , (15.13)

Thus, the amplitude squared is

|A|2 =
g4

[q2 − µ2]2
ura(p)ū

r
b(p) v

s
b(k)v̄sa(k) vs

′

c (k′)v̄s
′

d (k′)ur
′

d (p′)ūr
′

c (p′) . (15.14)

If we now sum over all the initial and final spin indices, s, r s′ and r′, the we can make
use of the identities

∑
s

us(p)ūs(p) = 6p+m∑
s

vs(p)v̄s(p) = 6p−m ,

etc. Then, we can write the amplitude squared (15.14) as

|A|2 =
g4

[q2 − µ2]2
( 6p+mχ)ab ( 6k −mχ)ba (6k′ −mψ)cd ( 6p′ +mψ)dc ,

=
g4

[q2 − µ2]2
Tr [(6p + mχ) (6k−mχ)] Tr [( 6k′ −mψ) (6p′ + mψ)] , (15.15)

where in the last equality we used the fact that the spinor indices in the first line are
summed over in order to write the traces over them. The next step is to perform the
traces over the gamma matrices. In this example this is very simple. For instance, we
need to compute

Tr [( 6p + mχ) (6k−mχ)] = Tr [ 6p 6k]−m2
χTr [1] , (15.16)

where we used the fact that the trace of a gamma matrix is zero, and in the last term we
have the trace over the 4× 4 identity, which is just 4. Finally, to compute the remaining
trace we need to use the Clifford algebra obeyed by the gamma matrices
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Tr {γµ, γν} = 4 gµν , (15.17)

so this results in

Tr [6p 6k] = pµ kν Tr [γµγν ] = 4 p · k , (15.18)

where to obtain the last result we used (15.17) together with the cyclic property of traces.
Then, for (15.16) we obtain

Tr [( 6p + mχ) (6k−mχ)] = 4
(
p · k−m2

χ

)
. (15.19)

With the obvious replacements, the same result is obtained for the second factor in (15.15).
Then, the squared of the amplitude can be written as

|A|2 =
16 g4

[q2 − µ2]2
(
p · k −m2

χ

) (
p′ · k′ −m2

ψ

)
. (15.20)

15.4 Computing the Cross Section

At this point, we can choose a reference frame to express the four-momenta in (15.20)
as well as in the phase space in order to compute the cross section for the scattering
process. However, it is also useful to express everything in terms of Lorentz invariant
variables whenever possible. For this purpose we define the Mandelstam variables for the
scattering process generically depicted in Figure 15.2

Figure 15.2: Generic kinematics of a 2 → 2 scattering used to defined the Mandelstam
variables.

We can define three independent combinations of the four-momenta entering in the process
once overall momentum conservation is imposed. With them we choose to form the
following Lorentz invariants
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s ≡ (p+ k)2 = (p′ + k′)2

t ≡ (p′ − p)2 = (k − k′)2

u ≡ (p′ − k)2 = (p− k′)2 . (15.21)

We can now express the momentum products in (15.20) in terms of these variables. Just
to simplify the calculation a bit more, we will assume

mχ = 0, mψ = m , (15.22)

from now on. Then, for the process χχ̄→ ψψ̄, we have

s = (p+ k)2 = p2 + k2 + 2 p · k , (15.23)

resulting in

p · k =
s

2
. (15.24)

Similarly

s = (p′ + k′)2 = p′2 + k′2 + 2 p′ · k′ = 2(m2 + p′ · k′) , (15.25)

resulting in

p′ · k′ = s− 2m2

2
. (15.26)

Finally, we notice that by momentum conservation we have

q2 = (p+ k)2 = s , (15.27)

so the scalar propagator depends on s. When this is the case for a given Feynman diagram
contribution, this is called “s channel”. From (15.24), (15.26) and (15.27) we see that
the amplitude squared depends exclusively on the Mandelstam variable s. Thus we can
rewrite (15.20) as
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|A|2 =
4 g4 s2 (1− 4m2/s)

[s− µ2]2
, (15.28)

However, the amplitude squared in (15.28) was obtained summing over all the final and
initial spin states. While this may be correct regarding the final spin states because the
experiment is not measuring the individual spins of the final state ( a typical situation),
this is not correct regarding the initial states. This is because the scattering between the
two initial states, χχ̄, takes place in one of all the possible spin combinations.

Figure 15.3: Possible spin configurations of unpolarized initial states in χχ̄ scattering.

This is illustrated in Figure 15.3, where we have four equally probable initial spin states
corresponding to unpolarized beams. Then, the amplitude squared must reflect the av-
erage over these initial spin states we have “erroneously” summed over. In our case this
implies we must use

|A|2 =
1

4
|A|2 . (15.29)

The denominator in (15.29) is the number of initial states that we might have summed over
in the computation of the amplitude squared. In other cases, there might be additional
quantum numbers we summed over in the calculation, such as color for initial quarks
and/or gluons in quantum chromodynamics. These will result in additional factors in the
denominator in (15.29). On the other hand, going back to our case of spins if the initial
states are polarized it would be advantageous to not sum over the initial spin states and
to work with separate amplitudes for each spin combination. These are called helicity
amplitudes.

Finally, to compute the cross section we need to make use of

dσ =
1

2Ep 2Ek

1

|vp − vk|
dΠ2 |A|2 , (15.30)

where vp,k are the velocities of the initial fermion and antifermion, and the two-particle
final-state phase space in the center of momentum (CM) frame is
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dΠ2 = dΩ
1

16π2ECM

|p′| , (15.31)

as previously derived. Here, p′ is the spatial momentum of the final state particles. The
differential solid angle is

dΩ = dφ d cos θ , (15.32)

where φ is the azimuthal angle of the final state fermion, and θ is the angle between the
direction of the incoming fermion χ and the one of the outgoing fermion ψ, as shown in
Figure 15.4.

Figure 15.4: Kinematics of the 2→ 2 scattering in the CM frame. In particular k = −p,
and k′ = −p′.

In the CM frame we have that

ECM = Ep + Ek = Ep′ + Ek′ , (15.33)

Then we can write

|p′| =
√
E2
p′ −m2 =

√
ECM/4−m2 =

ECM

2

√
1− 4m2/E2

CM , (15.34)

where we used that ECM = 2Ep′ .

Also in the CM frame, the denominator in the expression (15.30) for the cross section can
be written as

2Ep 2Ek |vp − vk| = E2
CM |1− (−1)| = 2E2

CM , (15.35)

where we used mχ = 0 to obtain vp = 1 and vk = −1, and we used that p = |p| ẑ. Putting
it all together, we obtain
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dσ

dΩ
=

√
1− 4m2/s

64π2s

g4 s2 (1− 4m2/s)

[s− µ2]2
, (15.36)

which we can simplify to

dσ

dΩ
=

1

64π2

g4 s (1− 4m2/s)
3/2

[s− µ2]2
. (15.37)

Let us make some comments on this result:

1. First we see that there is a threshold factor given by

√
1− 4m2

s
, (15.38)

which clearly tells us that for the cross section to be non-zero we need to satisfy
that s ≥ 4m2, i.e. the CM energy has to satisfy ECM ≥ 2m. This threshold factor
(15.38) comes directly from the expression (15.34) for the final state momentum and
therefore is purely kinematic and is generically present independently of the details
of the interactions. However, as it can be seen in (15.36), there are two additional
powers of this threshold factor coming from the amplitude squared. So in the partic-
ular case of Yukawa theory, fermion–antifermion scattering (or fermion–antifermion
annihilation) is suppressed by three powers of the threshold factor (15.38). This
extra powers are not present in the case of other interactions, such as for instance
for photon exchange in quantum electrodynamics (QED). In this way, we see that
the scattering cross section behavior just above threshold is very different in Yukawa
theory and in QED, even if the initial and final states were the same.

2. For CM energies much larger than both masses, i.e. for s� m2, µ2, the cross section
behaves like

dσ

dΩ
∼ 1

s
, (15.39)

which is a generic behavior. Cross sections fall off with the squared of the CM
energy for large enough energies, well above all mas scales in the problem.

3. For very large masses for the intermediate scalar, but CM energies still large when
compared with m, i.e. for

m2 � s� µ2 , (15.40)
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we observe that the cross section behaves like

dσ

dΩ
∼ g4

64π2

s

µ2
, (15.41)

that is, it growths with s. Having µ2 � s,m2 suggests that we can obtain this
results by integrating out the scalar to begin with. In fact this corresponds to the
replacement of the scalar propagator by

i

s− µ2
−→ −i

µ2
. (15.42)

Alternatively, we can obtain the result of (15.41) by integrating out φ from the
lagrangian (15.1) using functional integral techniques. This would result in the
following four-fermion interaction lagrangian

L4f = − g
2

µ2
χ̄χ ψ̄ψ , (15.43)

which is a dimension-six operator. Had we started with (15.43) we would know that
since the coupling must have two negative powers of energy as units this is non-
renormalizable interaction. The behavior of the cross section with s tells us that
non-renormalizable interactions will result in a growing cross section, which in turn
could result in a violation of unitarity (probability cannot grow indefinitely or else
it could go over 100 % ! ) for a given value of the center of mass energy squared, s .
This tells use that when we have a non-renormalizable interaction, the energy scale
defined by its coupling (in our case µ) cannot be arbitrarily high or else unitarity
will be violated.


