
Lecture 14

Feynman Rules for Fermions

We have already derived Feynman rules for scalar theories in perturbation theory. The
next step is to do the same for a theory involving fermions. The simplest such theory
is Yukawa theory, where fermions are coupled to a real scalar field through a dimension-
four operator, resulting in a dimensionless coupling. But before we derive the Feynman
rules for computing amplitudes in this theory, we need to know how to obtain amplitudes
involving fermions from the appropriate correlation functions, i.e. we need to derive the
LSZ formula for fermions.

14.1 LSZ Formalism for Fermions

The derivation of the LSZ formula for fermions folllows very closely the one for scalar
fields. First, we define momentum states with the following normalizations

|p, s〉 =
√

2Ep a
s†
p |0〉

|p, s〉 =
√

2Ep b
s†
p |0〉 , (14.1)

where s denotes the spin index, and the second state refers to an antifermion of momentum
p and spin s. With the expansion of the fermion field given by

ψ(x) =

∫
d3k

(2π)3

1√
2Ek

∑
s

{
ask e

−ik·x us(k) + bs†k e
+ik·x vs(k)

}
, (14.2)

we can write the creation operators in terms of the field and the spinors as
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as†p =
1√
2Ep

∫
d3xe−ip·x ψ̄(x)γ0us(p)

bs†p =
1√
2Ep

∫
d3xe−ip·x v̄s(p)γ0ψ(x) (14.3)

where we have used the normalization of spinors as

us†(p)ur(p) = 2Ep δ
sr, vs†(p)vr(p) = 2Ep δ

sr . (14.4)

We are interested in obtaining the transition amplitude between initial and final states,
each of which is composed of asymtotic particle states. Just as we did in the case of scalar
fields, we consider the asymtotic states in the far past making up the initial state |i〉 as
created by creation operators evaluated at t → −∞. For instance, if the initial state
consists of two fermions of momenta p1 and p2 we have

|i〉 =
√

2Ep1
√

2Ep2 a
s1†
p1

(−∞) as2†p2 (−∞) |0〉 , (14.5)

and analogously for the final state |f〉 defined in the far future or t→ +∞. If we consider
the scattering of two fermions in the initial state going into two fermions in the final state,
it would have an amplitude given by

〈f3f4|f1f2〉 =
√

2Ep1
√

2Ep2
√

2Ep3
√

2Ep4 〈0|ap3(+∞)ap4(+∞) a†p1(−∞) a†p2(−∞) |0〉 ,
(14.6)

where we have ommited the spinor indices for simplicity. In analogy with the scalar field
case we have

√
2Ep

(
a†p(+∞)− a†p(−∞)

)
=

√
2Ep

∫
dt ∂0

(
a†p(t)

)
=

∫
d4x ψ̄(x)

(
γ0←−∂0 − ip0γ0

)
us(p) e−ip·x

=

∫
d4x ψ̄(x)

(
γ0←−∂0 − ipjγj − im

)
us(p) e−ip·x

=

∫
d4x ψ̄(x)

(
γ0←−∂0 − γj

−→
∂j − im

)
us(p) e−ip·x

=

∫
d4x ψ̄(x)

(
γ0←−∂0 + γj

←−
∂j − im

)
us(p) e−ip·x ,(14.7)
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where
←−
∂ means that the derivative acts on the left of the operator. In the first line we

use just basic calculus. In the second line we applied the time derivative on the first of
equations (14.3). In the third line, we used that (6 p − m)us(p) = 0, and j = 1, 2, 3 are
the spatial components. In the fourth line we use that pj = −i∂j, and in the fifth one we
integrate by parts the term with the spatial derivatives so that it acts on the left now.
The final expression reads

√
2Ep

(
a†p(+∞)− a†p(−∞)

)
= −i

∫
d4x ψ̄(x)

(
i
←−
6∂ x +m

)
us(p) e−ip·x . (14.8)

It is now straightforward to obtain the analogous expression for the annihilation operators,
just by taking the complex conjugate operation on (14.8). This results in

√
2Ep (ap(+∞)− ap(−∞)) = −i

∫
d4x eip·x ūs(p) (i 6∂x −m)ψ(x) . (14.9)

We can then use these expressions to write the LSZ formula for the fermion-fermion
scattering process, 〈f3f4|f1f2〉. For this process we can write the LSZ formula like

〈f3f4|f1f2〉 =
√

2Ep1
√

2Ep2
√

2Ep3
√

2Ep4 〈0|Tap3(+∞)ap4(+∞) a†p1(−∞) a†p2(−∞) |0〉

= (−i)4

∫
d4x1 d

4x2 d
4x3 d

4x4 e
ip3·x3 ū(p3) (i 6∂x3 −m) eip4·x4 ū(p4) (i 6∂x4 −m)

〈0|T
(
ψ(x3)ψ(x4)ψ̄(x1)ψ̄(x2)

)
|0〉
(
i
←−
6∂ x1 +m

)
u(p1) e−ip1·x1

(
i
←−
6∂ x2 +m

)
u(p2) e−ip2·x2

(14.10)

As we did for the scalar fields, we use the fact that the annihilation and creation operators
are time ordered to express them as the time-ordered differences in (14.7) and (14.8) in
the first equality above. The correlation function, i.e. the vacuum expectation value of
the time-ordered product of the fermion fields in the external points, reflects the fact that
in order to create fermions in the initial state we need ψ̄(x), whereas to create fermions
in the final state ψ(x) is needed. The salient point is that, analogously to the case of
scalar fields, the action of the Dirac operators on the correlation function expressed as
the sum of products of propagators, will result in delta functions that will organize the
momentum conservation by having momentum delta functions at each vertex, in addition
to stripping the amplitude of the external propagators.

Similarly, if we want the amplitude for scattering of a fermion and antifermion in the
initial state going into a fermion and antifermion final state we will have
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〈f3f̄4|f1f̄2〉 =
√

2Ep1
√

2Ep2
√

2Ep3
√

2Ep4 〈0|ap3(+∞)bp4(+∞) a†p1(−∞) b†p2(−∞) |0〉 .
(14.11)

In the same way we obtained (14.7), we can obtain

√
2Ep

(
b†p(+∞)− b†p(−∞)

)
=

√
2Ep

∫
dt ∂0

(
b†p(t)

)
= −i

∫
d4x e−ip·x v̄s(p) (i 6∂x −m)ψ(x) ,

for the anti-fermion creation operators. This is

√
2Ep

(
b†p(+∞)− b†p(−∞)

)
= −i

∫
d4x e−ip·x v̄s(p) (i 6∂x −m)ψ(x) . (14.12)

For the annihilation operators we simply obtain, which by complex conjugation,

√
2Ep (bp(+∞)− bp(−∞)) = −i

∫
d4x ψ̄(x)

(
i
←−
6∂ x +m

)
vs(p) eip·x , (14.13)

which results in the corresponding LSZ formula

〈f3f̄4|f1f̄2〉 =
√

2Ep1
√

2Ep2
√

2Ep3
√

2Ep4 〈0|Tap3(+∞)bp4(+∞) a†p1(−∞) b†p2(−∞) |0〉

= (−i)4

∫
d4x1 d

4x2 d
4x3 d

4x4 e
ip3·x3 ū(p3) (i 6∂x3 −m) eip4·x4 v(p4) (i 6∂x4 +m)

×〈0|T
(
ψ(x3)ψ̄(x4)ψ̄(x1)ψ(x2)

)
|0〉

×
(
i
←−
6∂ x1 +m

)
u(p1) e−ip1·x1

(
i
←−
6∂ x2 −m

)
v̄(p2) e−ip2·x2

(14.14)

More generally, we can use the boxed equations (14.8), (14.9), (14.12) and (14.13) to
compute any amplitude for any process involving fermions and/or anti-fermions in the
initial and/or final state.
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14.2 Yukawa Theory

Having derived the LSZ formula for fermions we are now in a position to derive the
Feynman rules in a theory coupling a fermion with a real scalar, Yukawa theory1. The
lagrangian density is given by

L = ψ̄ (i 6∂ +m)ψ +
1

2
∂µφ∂µφ−

1

2
µ2φ2 − gψ̄ψφ+ . . . , (14.15)

where the dots include several terms that must be present because they will be generated
by fermion loop corrections, such as tadpole term φ, and φ3 and φ4 terms. We are however
only interested in the triple interaction fermion-fermion-scalar above, since we will only
work at tree level in this lecture2.

The first step to derive the Feynman rules is to obtain the rule for the vertex at tree level.
For this purpose, as well as to obtain the subsequent correlation functions, we need the
generating functional

Z[η, η̄, J ] =

∫
DψDψ̄Dφ eiS[ψ,ψ̄,φ]+i

∫
d4x{J(x)φ(x)+η̄(x)ψ(x)+ψ̄(x)η(x)} (14.16)

The vertex at tree level is obtained as a 3-point function given by

G(3)(x1, x2, x3) =
(−i)3

Z[0, 0, 0]

δ3Z[η, η̄, J ]

δJ(x1)δη(x2)δη̄(x3)

∣∣∣∣
J,η,η̄=0

(14.17)

In order to implement perturbation theory in powers of the coupling constant g we expand
the interaction term in the action. To obtain the desired correlation function we only need
to go up to the O(g) term

G(3)(x1, x2, x3) =
1

Z[0, 0, 0]

∫
DψDψ̄Dφ eiS0[ψ,ψ̄,φ]φ(x1)ψ̄(x2)ψ(x3)

×
(

1− ig
∫
d4y ψ̄(y)ψ(y)φ(y) + . . .

)
, (14.18)

where the dots denote terms of order g2 and higher and S0 refers to the action of the
free theory, or the order g0 action. Using Wick’s theorem we see that there is only one

1We use this name for short. However, true Yukawa theory requires φ to be a pseudo-scalar, i.e. odd
under parity transformations.

2In true Yukawa theory parity invariance forbids the presence of odd powers of φ. However, the φ4

term is still inevitably generated at one loop.
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possible pairing into propagators. To get the sign right, we must remember that fermion
fields anticommute. Thus, the pairing of fields into propagators gives

φ(x1)ψ̄(x2)ψ(x3)ψ̄(y)ψ(y)φ(y) = DF (x1 − y) ψ̄(x2)SF (x3 − y)ψ(y)

= −DF (x1 − y)SF (x3 − y)ψ(y)ψ̄(x2)

= −DF (x1 − y)SF (x3 − y)SF (x2 − y) . (14.19)

Then, the use of Wick’s theorem results in

G(3)(x1, x2, x3) = +ig

∫
d4y DF (x1 − y)SF (x3 − y)ab SF (x2 − y)ba , (14.20)

where a and b are Dirac indices and are summed over. In position space we represent this
by Figure 14.1.

Figure 14.1: Position space Feynman diagram for the 3-point function in Yukawa theory.
The dashed line representes the scalar propagator, whereas solid lines stand for the fermion
propagators.

To obtain the Feynman rule in momentum space we make use of the LSZ formula. Since
the amplitude is mixed, having fermion and scalar external propagators, the LSZ reduction
formula involves Klein-Gordon operators as well as Dirac operators. We start with the
expression in terms of annihilation and creation operators

〈f2 f̄3|s1〉 =
√

2E1

√
2E2

√
2E3 〈0|ap2(+∞) bp3(+∞) c†p1(−∞)|0〉 , (14.21)

where we defined c†p1(t) as the creation operator for a scalar of momentum p1 at time t.
Using (14.9) and (14.13), as well as a similar expression for the creation operator of the
scalar field, we have
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〈f2 f̄3|s1〉 = (−i)3

∫
d4x1 d

4x2 d
4x3 e

−ip2·x2 ūs(p2) (i 6∂x2 −m) e−ip1·x1
(
∂2
x1

+ µ2
)
×

〈0|T φ(x1)ψ(x2) ψ̄(x3)|0〉
(
i
←−
6∂ x3 +m

)
vr(p3) eip3·x3 , (14.22)

If we now use the expression (14.20) in (14.22), and using that

(∂2
x1

+ µ2)DF (x1 − y) = −iδ(4)(x1 − y) , (14.23)

and that

(i 6∂x2−m)SF (x2−y) = iδ(4)(x2−y), SF (x3−y)(i
←−
6∂ x3 +m) = iδ(4)(x3−y) , (14.24)

we arrive at

〈f2 f̄3|s1〉 = (−ig) (2π)4 δ(4)(P1 − P2 − P3) ūs(p2) vr(p3) , (14.25)

where we used the delta functions to perform the integrals over the external points in
(14.22) and the integral over the internal point y in the correlation function results in the
momentum conservation delta function. Here we considered the fermion and antifermion
as outgoing, with the incoming scalar3. Thus, the momentum space Feynman rule for
the vertex in Yukawa theory tells us to have a factor of −ig at the vertex, a momentum
conservation delta function, plus a factor of ū(p) for each outgoing fermion, and vs(p) for
each outgoing antifermion. This defines the vertex for the Yukawa theory. In general, for
each occurring vertex we will need to have a factor of (−ig), regardless of the fact that the
fermions are external asymptotic states or there are internal to a diagram and therefore
represented by their propagators. The spinors will only be present if the fermions are
indeed external states.

A more interesting process to consider is that of fermion–antifermion scattering. We
consider f1f̄2 → f3f̄4. The relevant correlation function is

G(4)(x1, x2, x3, x4) =
(−i)4

Z[0, 0, 0]

δ4

δη(x4)δη̄(x3)δη̄(x2)δη(x1)
Z[J, η, η̄]

∣∣∣∣
J,η,η̄=0

, (14.26)

where once again we have chosen the functional derivatives applied on (14.16) so as to
obtain the desired mix of fermions and antifermions in the correlation function. The first

3This is of course arbitrary and unnecessary. When the vertex appears in a given diagram, the
approrpiate spinors should be inserted. The actual content of the vertex rule is just the factor (−ig) and
the momentum conservation delta function.
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non-zero contribution to this process comes from the second order term in the expansion
of the interaction term in the action.

G(4)(x1, x2, x3, x4) =
1

Z[0, 0, 0]

∫
DψDψ̄Dφ eiS0[ψψ̄,φ] ψ̄(x4)ψ(x3)ψ(x2)ψ̄(x1)

×
(

1− ig
∫
d4y ψ̄(y)ψ(y)φ(y) (14.27)

+
(−ig)2

2!

∫
d4y d4z ψ̄(y)ψ(y)φ(y) ψ̄(z)ψ(z)φ(z) + . . .

)
.

Taking all possible pairings according to Wick’s theorem, we see there are two such
possible terms. We must be careful in making the pairings in the process of contracting
fields of different points into fermion propagators due to the anticommutation rules for
spinor fields. For the first pairing we have

ψ̄(x4)ψ(x3)ψ(x2)ψ̄(x1)ψ̄(y)ψ(y)ψ̄(z)ψ(z) = +ψ̄(x4)ψ(x3)ψ(x2)ψ̄(y)SF (x1 − y)ψ̄(z)ψ(z)

= +ψ̄(x4)ψ(x3)SF (x2 − y)SF (x1 − y)ψ̄(z)ψ(z)

= +ψ̄(x4)SF (x3 − z)SF (x2 − y)SF (x1 − y)ψ(z)

= −SF (x4 − z)SF (x3 − z)SF (x2 − y)SF (x1 − y) .

(14.28)

To understand the sign in the last equation in (14.28), we first see that in the first line we
need to pass ψ̄(x1) through two fermion fields, ψ̄(y) and ψ(y), in order to form SF (x1−y)
with the latter. Then, the second line is obtained by noticing that SF (x2− y) is obtained
from the previous line without moving any fermion field. For the third line, we move
freely (without anticommuting) ψ̄(z) to the left through the two propagators in order to
form SF (x3− z). Finally, to obtain the last line, we need to flip ψ̄(x4) with ψ(z) in order
to form SF (x4− z), which picks up a minus sign due to the anticommutation rules. Thus,
the first contribution has an overall negative sign.

We repeat the procedure for the second possible contractions. We now have

ψ̄(x4)ψ(x3)ψ(x2)ψ̄(x1)ψ̄(y)ψ(y)ψ̄(z)ψ(z) = +ψ̄(x4)ψ(x3)ψ(x2)ψ̄(y)SF (x1 − y)ψ̄(z)ψ(z)

= −ψ̄(x4)ψ(x2)SF (x3 − y)SF (x1 − y)ψ̄(z)ψ(z)

= −ψ̄(x4)SF (x3 − y)SF (x1 − y)SF (x2 − z)ψ(z)

= +SF (x4 − z)SF (x3 − y)SF (x1 − y)SF (x2 − z) .

(14.29)
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Then, the correlation function is given by

G(4)(x1, x2, x3, x4) = (−ig)2

∫
d4y d4z {−SF (x1 − y)SF (x2 − y)DF (y − z)SF (x3 − z)SF (x4 − z)

+SF (x1 − y)SF (x2 − z)DF (y − z)SF (x3 − y)SF (x4 − z)} , (14.30)

meaning that the two contributions have a relative sign between them. We can represent
these two contributions by Feynman diagrams in position space

Figure 14.2: Connected position-space diagrams contributing to the four-point function
to order g2 in Yukawa theory. Solid lines denote fermion propagators, whereas dashed
lines correspond to scalar ones.

If we now use the LSZ formula to obtain the amplitude for the fermion–antifermion
scattering process, the external propagators will be stripped by the action of the Dirac
operators on them, leaving delta functions. The result is, for the contribution of the
diagram from Figure 14.2 (a)

〈f3f̄4|f1f̄2〉(a) = − (−ig)2

∫
d4y d4z

∫
d4x1 d

−iP1·x1δ(x1 − y)

∫
d4x2 e

−iP2·x2δ(x2 − y)DF (y − z)∫
d4x3e

iP3·x3δ(x3 − z)

∫
d4x4e

iP4·x4δ(x4 − z) v̄s2(p2)us1(p1) ūs3(p3)vs4(p4)

= − (−ig)2

∫
d4y d4z e−i(P1+P2)·yDF (y − z) ei(P3+P4)·z v̄s2(p2) . . . vs4(p4)

= − (−ig)2

∫
d4y d4z

∫
d4q

(2π)4
e−iq·(y−z)

i

q2 − µ2
e−i(P1+P2)·y ei(P3+P4)·z

×v̄s2(p2)us1(p1) ūs3(p3)vs4(p4) ,

(14.31)

where in the last equality we expressed the scalar propagator DF (y−z) by its momentum
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integral. It is clear from (14.31) that we can now perform the integrals on y and z
obtaining

〈f3f̄4|f1f̄2〉(a) = − (−ig)2

∫
d4q

(2π)4
(2π)4δ(4)(P1 + P2 + q) (2π)4δ(4)(P3 + P4 + q)

i

q2 − µ2
v̄s2(p2)us1(p1) ūs3(p3)vs4(p4)

= − (−ig)2(2π)4δ(4)(P1 + P2 − P3 − P4)
i

q2 − µ2
v̄s2(p2)us1(p1) ūs3(p3)vs4(p4) ,

(14.32)

where by virtue of the last q integration q = −(P1 + P2) = −(P3 − P4) in the scalar
propagator. The expression in (14.32) is the contribution to the amplitude of the diagram
Figure 14.2 (a), but in momentum space. This is depicted by the momentum-space
Feynman diagram of Figure 14.3 (a).

Figure 14.3: Connected momentum-space diagrams contributing to the scattering ampli-
tude up to order g2 in Yukawa theory. Solid lines denote fermion propagators, whereas
dashed lines correspond to scalar ones.

By a completely analogous procedure we obtain the contribution to the amplitude from
the diagram in Figure 14.2 (b). The answer is

〈f3f̄4|f1f̄2〉(b) = (−ig)2(2π)4δ(P1 + P2 − P3 − P4)
i

q2 − µ2
ūs3(p3)vs1(p1) v̄s2(p2)us4(p4) ,

(14.33)

where the integral over q is done with a delta function fixing it at q = P3−P1 = P2−P4,
i.e. different from the value of the momentum flowing through the scalar propagator the
previous amplitude. This contribution to the amplitude is depicted in a momentum-space
Feynman diagram in Figure 14.3 (b). The relative sign between the two amplitudes is an
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observable since when computing the square of the amplitude the sign of the interference
term will depende on it.

From this exercise we can derive the Feynman rules for Yukawa theory. The diagrams
of Figure 14.3 can be used to obtain the desired amplitude for the scattering process
f1f̄2 → f3f̄4 by following these rules.

1. Insert a factor of (−ig) for each vertex in the diagram.

2. Insert a factor of
i

q2 − µ2

for each scalar propagator of momentum q in the diagram.

3. Insert a factor of
i

6p−m
for every fermion propagator of momentum p in the diagram.

4. Momentum conservation is satisfied at each vertex. There is an overall momentum
conservation factor of

(2π)4 δ(4)(Pi − Pf )
in the contribution of each diagram to the total amplitude, where Pi is the sum of
all the initial four-momenta, and Pf is the sum of all final four-momenta.

5. Integrate over undetermined four-momenta (if any) with a factor of∫
d4k

(2π)4

for each free four-momentum k in the diagram.

6. Divide by any symmetry factors.

7. Attach a factor of:

• us(p) for each incoming fermion of momentum p,

• ūs(p) for each outgoing fermion,

• v̄s(p) for each incoming antifermion,

• vs(p) for each outgoing antifermion.

8. Insert a factor of (−1) for each enclosed fermion loop.

These are the momentum-space Feynman rules for computing amplitudes of processes.
One needs to draw all possible diagrams contributing, and also be careful to have the
correct relative sign between the various diagrams, such as in the case of the relative
minus sign between the two diagrams of Figure 14.3. The final rule of the list above will
be derived below.
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14.3 Closed Fermion Loops

The last of the Feynman rules in the previous section refers to diagrams with closed
fermion loops. For instance, let us consider the diagram of Figure 14.4 in Yukawa theory.

Figure 14.4: Closed fermion loop in Yukawa theory.

We can think of the diagram in position space as involving the product of fermions fields

ψ̄a(x)ψa(x) ψ̄b(y)ψb(y) ψ̄c(z)ψc(z) ψ̄d(w)ψd(w) , (14.34)

where we have ignored the scalar fields since they do not enter in the proof, the internal
positions are to be integrated over, and we made explicit the spinorial indexes. It is
clear that in order to build the internal fermion propagators we need to get spinors to
anticommute through an odd number of fermion fields. For instance, the entire diagram
can be contracted in pair of fermions as indicated in Figure 14.4, if we get ψ̄a(x) through
all fields to contract with ψd(y) and form SF (y − x)da. The answer would read

(−1)7SF (x− w)ab SF (w − z)bc SF (z − y)cd SF (y − x)da

= (−1) Tr [SF(x− w) SF(w − z) SF(z− y) SF(y − x)] . (14.35)

We can see from (14.35) that this is a generic feature of closed fermion loops: Since all
fermion fields minus two are already arranged to contract in the appropriate propagators,
we always need to move one fermion field through all the others to form the last propagator
closing the loop. This always brings a factor of (−1) times the trace of the product of
all propagators. That is, for a closed fermion loop with nf fermion propagators, there is
always factor of

(−1)2nf−1 Tr [SF . . . SF] = (−1) Tr

[
nf∏

i=1

SFi

]
. (14.36)
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This is the last Feynman rule we need to compute amplitudes from Feynman diagrams in
momentum space.

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
4.7.

• Quantum Field Theory , by M. Srednicki, Chapter 45.


