
Lecture 12

From Correlation Functions to
Amplitudes

Up to this point we have been able to compute correlation functions up to a given order in
perturbation theory. Our next step is to relate these to amplitudes for physical processes
that we can use to compute observables such as scattering cross sections and decay rates.
For instance, assuming given initial and final states, we want to compute the amplitude
to go from one to the other in the presence of interactions. In order to be able to define
initial and final states we consider a situation where the interaction takes place at a
localized region of spacetime and the initial state is defined at t→ −∞, whereas the final
state is defined at t → +∞. These asymptotic states are well defined particle states.
That is, if we have a two-particle state of momentum |p1p2〉, this means that the wave-
packets associated with each of the particles are strongly peaked at p1 and p2, and are well
separated in momentum space. This assumption simplifies our treatment of asymptotic
states. The same will be assumed of the final state |p3 . . . pn〉. We will initially assume
these states far into the past and into the future are eigenstates of the free theory. The
fact is they are not, even if they are not interacting say through scattering. The reason
is that the presence of interactions modifies the parameters of the theory, so even the
unperturbed propagation from the far past or to the far future is not described by free
eigenstates. However, the results we will derive for free states will still hold with some
modifications associated with the shift of the paramenters of the theory (including the
fields) in the presence of interactions. We will say more about this at the end of the
section.

We start by defining the object the we want to compute in order to make observable
predictions. The aim is to relate this observable to the correlation functions of our quan-
tum field theory. The amplitude for a process from an initial state |i〉 of two particles of
well defined momentum to go to a final state of several particles of well defined momenta
is a typical observable we will need to compute to calculate cross sections and similar
observables. For simplicity, we consider here a real scalar field.
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2 LECTURE 12. FROM CORRELATION FUNCTIONS TO AMPLITUDES

For the states in the far past we define

|p〉 =
√

2ωp a
†
p(−∞)|0〉 , (12.1)

where the a†p(−∞) creates a particle of momentum p at t→ −∞. Analogously,

|p〉 =
√

2ωp a
†
p(+∞)|0〉 , (12.2)

creates a particle in the far future for t → +∞. The relativistic normalization is chosen
so that the free field operator

φ(x) =

∫
d3k

(2π)3
1√
2ωk

(
ake
−ik·x + a†ke

+ik·x
)
, (12.3)

results in

〈0|φ(x)|p〉 = e−ip·x = e−iωpteip·x , (12.4)

which can be interpreted as the time-evolved, single-particle state |p〉 in position space.
The amplitude then can be written as

〈p3 . . . pn|p1p2〉 =
√

2ωp1
√

2ωp2
√

2ωp3 . . .
√

2ωpn
× 〈0|ap3(+∞) . . . apn(+∞) a†p1(−∞) a†p2(−∞)|0〉 . (12.5)

In order to relate the amplitude in (12.5) to the corresponding n-point correlation function
we will need to write the creation and annihilation operators above in terms of the fields
themselves.

12.1 The LSZ Reduction Formula

We want to express (12.5) in terms of fields. We start by noticing that

(i∂t + ωk)
(
ake
−ik·x + a†ke

ik·x
)

= 2ωk ak e
−ik·x . (12.6)

When we apply this operator to the field we now have
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∫
d3x e−ip·x(i∂t + ωp)φ(x) =

∫
d3x e−ip·x(i∂t + ωp)

∫
d3k

(2π)3
1

2ωk

(
ake
−ik·x + a†ke

ik·x
)

=

∫
d3k

(2π)3

∫
d3x

(
e−i(p−k)·xe−iωktak

ωp + ωk√
2ωk

+ e−i(p+k)·xeiωkta†k
ωp − ωk√

2ωk

)
.

Clearly, the space integrals result in factors of (2π)3δ(3)(p± k) in both terms. Then this
gives us the identity

∫
d3x e−ip·x(i∂t + ωp)φ(x) =

√
2ωp ap e

−iωpt . (12.7)

In order to derive the desired relation though, we need to compute the following

∫
d4x eip·x

(
∂2 +m2

)
φ(x) =

∫
d4x eip·x

(
∂2t −∇2 +m2

)
φ(x)

=

∫
d4x eip·x

(
∂2t + p2 +m2

)
φ(x)

=

∫
d4x eip·x

(
∂2t + ω2

p

)
φ(x) . (12.8)

To obtain the second line of (12.8) we integrated by parts (twice) the spatial derivatives
so that they would act on the exponential, bringing down a −p2. In doing so we are still
assuming, as we have done so far in the course, that sources die down for x→ ±∞. On
the other hand, we will not be assuming the same for t→ ±∞, since we are considering
the presence of asymptotic states in the far past and far future.

Finally, we notice that the integrand in the last line of (12.8), can be rewritten as

eip·x
(
∂2t + ω2

p

)
φ(x) = −i∂t

[
eip·x (i∂t + ωp)φ(x)

]
. (12.9)

Now we can put it all together. We have from (12.8) and (12.9) that

∫
d4x eip·x

(
∂2 +m2

)
φ(x) = −i

∫
d4x ∂t

[
eip·x (i∂t + ωp)φ(x)

]
= −i

∫
dt ∂t

[
eiωpt

∫
d3x e−ip·x (i∂t + ωp)φ(x)

]
= −i

∫
dt∂t

[√
2ωp ap

]
, (12.10)
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where in the last equality we used (12.7). The integral is a total derivative, but it is not
trivial due to the presence of the asymptotic states defined for t→ ±∞. We then obtain

i

∫
d4x eip·x

(
∂2 +m2

)
φ(x) =

√
2ωp [ap(+∞)− ap(−∞)] . (12.11)

Then we can obtain the adjoint relation from (12.11) for the creation operators

−i
∫
d4x e−ip·x

(
∂2 +m2

)
φ(x) =

√
2ωp

[
a†p(+∞)− a†p(−∞)

]
. (12.12)

Now, we can use the results in (12.11) and (12.12) in the expression (12.5) for the ampli-
tude. But first we rewrite it by using the fact that it is already time-ordered.

〈f |i〉 =
√

2ωp1
√

2ωp2
√

2ωp3 . . .
√

2ωpn
× 〈0|ap3(+∞) . . . apn(+∞) a†p1(−∞) a†p2(−∞)|0〉
=

√
2ωp1 . . .

√
2ωpn 〈0|T ([ap3(+∞)− ap3(−∞)] . . . (12.13)

[apn(+∞)− apn(−∞)]
[
a†p1(+∞)− a†p1(−∞)

] [
a†p2(+∞)− a†p2(−∞)

])
|0〉 ,

where in the last equality we used the fact that the time-ordering operator T tells us to
put all earlier time operators (here, those evaluated at t → −∞) to the right, whereas
the later time operators should be going on the left. Since

ap(−∞)|0〉 = 0 , 〈0|a†p(+∞) = 0 , (12.14)

then the equality between the first and second line in (12.13) holds. Which means that
now we can rewrite the amplitude as

〈f |i〉 = i

∫
d4x3 e

ip3·x3
(
∂2x3 +m2

)
· · ·
∫
d4xn e

ipn·xn
(
∂2xn +m2

)
× i

∫
d4x1 e

−ip1·x1
(
∂2x1 +m2

)
i

∫
d4x2 e

−ip2·x2
(
∂2x2 +m2

)
× 〈0|T (φ(x1)φ(x2)φ(x3) . . . φ(xn)) |0〉 . (12.15)

The equation above goes by the name of LSZ formula (after Lehmann, Symanzik and
Zimmermann). It gives us a relation between an amplitude involving n-particle states in
momentum space and the n-point correlation function.
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Although we have been considering the asymptotic fields as free fields for t → ±∞,
the LSZ reduction formula is still valid for interacting fields. The point is that we can
always follow the individual particle states to the far past or the far future by making use
of wave-packets and assuming that these are sufficiently separated (e.g. in momentum
space). However, even if this is achieved we still need to guarantee that the following
equalities are valid in the presence of interactions

〈0|φ(x)|0〉 = 0, 〈0|φ(x)|p〉 = e−ip·x . (12.16)

This must be assumed despite the fact that in general φ(x) is not given by (12.3) any-
more. The way to ensure this is to redefine the field in the presence of interactions in
order to satisfy (12.16). This field redefinition in the presence of interactions is part
of a procedure called renormalization, and it also affects the mass and the interaction
coupling. We will go back to this point later in the course. But the point is that even
after these redefinitions, the LSZ reduction formula is valid since the analytic structure
of the (renormalized) correlation functions regarding the asymptotic states (e.g. the pole
structure of the correlation function) remains the same (accounting for the shift in the
mass, couplings and field).

The meaning of the LSZ reduction formula becomes clearer once we apply the Klein-
Gordon operators on the correlation functions. Each of these operators acts on a field
evaluated on an external point xi, with i = 1, 2, . . . . But for each of these we have

(∂2xi +m2)DF (xi − y) = −iδ(4)(xi − y) , (12.17)

where y is some other point (external or internal). Thus, we see that each of the operators
turns the external propagators into delta functions. This is sometimes called “amputa-
tion”: in order to obtain the actual amplitude the external propagators are removed in
the way prescribed by (12.15). This is the result of the fact that the external states are
on shell. As we will see below, computing an amplitude requires to obtain the connected
diagrams from the appropriate connected correlation function to the desired order on per-
turbation theory, and then amputate it of the external propagators. We will illustrate this
with some examples.

Example 1: We want to compute the four-point function up to order λ in the φ4 theory
of a real scalar field. In particular, we want to compute an amplitude for scattering two
particles of momenta p1 and p2 into two final state particles of momenta p3 and p4

〈p3p4|p1p2〉 . (12.18)

As we have seen before, the order λ0 contributions are disconnected diagrams only. They
are
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G
(4)
0 (x1, x2, x3, x4) = DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4)

+DF (x1 − x4)DF (x2 − x3) (12.19)

When we apply (12.15) to get the amplitude (12.18) we get no contribution to this order.
The reason is that the number of poles in the above expression is not enough to kill
the “zeroes” in the LSZ formula coming from the four operators (∂2xi + m2). These
zeroes are associated to the action of the two remnant Klein-Gordon operators acting
on the delta functions that resulted from using (12.17) on the other two propagators in
(12.19), and they basically correspond to the on-shellness conditions −p2i + m2 = 0 for
all the asymptotic states. One can check that the same will happen to any disconnected
diagram. As a conclusion, we see that disconnected diagrams in the four-point function
do not contribute to the scattering amplitude (12.18).

On the other hand, going to order λ we have the fully connected four-point function (see
previous lectures)

G
(4)
λ (x1, x2, x3, x4) = (−iλ)

∫
d4y DF (x1−y)DF (x2−y)DF (x3−y)DF (x4−y) . (12.20)

The application of the LSZ reduction formula (12.15) to the expression above results in

〈p3p4|p1p2〉 = i

∫
d4x1 e

−ip1·x1
(
∂2x1 +m2

)
i

∫
d4x2 e

−ip2·x2
(
∂2x2 +m2

)
(12.21)

i

∫
d4x3 e

ip3·x3
(
∂2x3 +m2

)
i

∫
d4x4 e

ip4·x4
(
∂2x4 +m2

)
G

(4)
λ (x1, x2, x3, x4) .

Applying (12.21) to (12.20) we obtain

〈p3p4|p1p2〉 = (−iλ)

∫
d4y

∫
d4x1 e

−ip1·x1δ(4)(x1 − y)

∫
d4x2 e

−ip2·x2δ(4)(x2 − y)

×
∫
d4x3 e

ip3·x3δ(4)(x3 − y)

∫
d4x4 e

ip4·x4δ(4)(x4 − y)

= (−iλ)

∫
d4y e−i(p1+p2−p3−p4)·y

= (−iλ) (2π)4 δ(4)(p1 + p2 − p3 − p4) (12.22)

From this expression, we see that the amplitude is just the insertion of the vertex fac-
tor (−iλ) times a momentum conservation delta function. The appearance of this delta
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function is associated to the fact that all external points are connected to the same in-
ternal point y where the interaction takes place. That is, it comes from the fact that the
interaction is local. Another important point is that, unlike for the order λ0 above, the sin-
gularities of the contribution to the four-point function G

(4)
λ (x1, x2, x3, x4) exactly match

the action of the Klein-Gordon operators in (12.21). The result above is a first example of
a Feynman rule in momentum space. Insert the interaction factor (−iλ) and a momentum
conservation delta function in each vertex. Strip all external propagators (which is the
result of applying the LSZ formula). This is schematically shown in Figure 12.1 below.

Figure 12.1: Momentum-space Feynman rule for the four-point amplitude to order λ in
φ4 theory.

However, there is more to the Feynman rules. To derive the rest we need to go to an
example with higher orders in λ.

Example 2: Four-point function to order λ2.

The λ2 contribution to the four-point function can be obtained from

G
(4)

λ2 (x1, x2, x3, x4) =
1

Z[0]

∫
Dφφ(x1)φ(x2)φ(x3)φ(x4)×

1

2!

(−iλ)2

(4!)2

∫
d4y φ4(y)

∫
d4z φ4(z) .

(12.23)

In (12.23), the factor of 1/2! coming from the exponential expansion cancelled by the
exchange y ↔ z. We will concentrate on connected diagrams. There are three ways of
connecting the external fields to the eight fields at points y and z of the interactions.
They are depicted in Figure 12.2 below.

Let us focus on the first diagram (a). The combinatoric factor in front of it can be
obtained by counting the ways to match φ(x1) with φ(y) (4), times the ways of matching
φ(x2) with the remaining φ(y) (3), times the 4 ways of matching φ(x3) with φ(z), times
the 3 ways to match φ(x4) with φ(z). Finally, we need to contract the remaining φ(y) and
φ(z), which brings an extra factor of 2. All in all, the combinatoric factor times 1/(4!)2

results in an overall factor of
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Figure 12.2: Connected diagrams contributing to the four-point function to order λ2 in
φ4 theory.

(−iλ)2
1

2
. (12.24)

We can understand the factor of 1/2 above in this diagram as a symmetry factor. It
is the factor we need to divide by if we assume that at each vertex of the diagram we
insert a factor of −iλ, which is the coefficient for the four-point function at order λ. In
this diagram, using −iλ at each vertex is overcounting the combinatoric factor since it
is tantamount to assuming that all the lines at the two vertices are un-contracted fields.
But we know that the internal lines coming from the vertices result in contractions into
two propagators. To obtain the symmetry factors we see that the use of −iλ will result
in counting diagrams interchanging the internal integration points y and z as distinct
contributions. But this is not the case. So we can think of this factor of 2 as obtained by
exchanging the two internal propagators, resulting in undistinguishable contributions.

The result for the contribution to the four-point function is

G
(4)
(a)(x1, x2, x3, x4) =

(−iλ)2

2

∫
d4y d4z DF (x1 − y)DF (x2 − y)DF (x3 − z)DF (x4 − z)

DF (y − z)DF (y − z) . (12.25)

We want to obtain the O(λ2) contributions to the scattering amplitude for two particles
of initial fixed momenta to go to other two particles of known final momenta. Applying
(12.15) on (12.25) we get

〈p3p4|p1p2〉(a) =
(−iλ)2

2

∫
d4y d4z e−i(p1+p2)·y ei(p3+p4)·zDF (y − z)DF (y − z) , (12.26)

where the action of each Klein-Gordon operator (∂2xi +m2) on the propagators containing

an external point xi in the argument resulted in factors of −iδ(4)(xi−y) and −iδ(4)(xi−z)
which we used to integrate over the xi’s. Since the two internal propagators do not have
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external positions in their arguments they remain in (12.26). In order to make further
progress we are going to express these propagators in momentum space by making use of

DF (y − z) =

∫
d4q

(2π)4
e−iq·(y−z)

i

q2 −m2 + iε
, (12.27)

in (12.26). We then obtain

〈p3p4|p1p2〉(a) =
(−iλ)2

2

∫
d4y d4z e−i(p1+p2)·y ei(p3+p4)·z

×
∫

d4q

(2π)4
e−iq·(y−z)

i

q2 −m2 + iε

∫
d4k

(2π)4
e−ik·(y−z)

i

k2 −m2 + iε
.

We can now perform the integrals in the positions y and z resulting in two delta functions.
This gives

〈p3p4|p1p2〉(a) =
(−iλ)2

2

∫
d4q

(2π)4

∫
d4k

(2π)4
(2π)4 δ(4)(p1 + p2 + q + k) (2π)4 δ(4)(p3 + p4 + q + k)

× i

q2 −m2 + iε

i

k2 −m2 + iε
(12.28)

Performing one of the momentum integrals above by using one of the delta functions (e.g.
integrating over k) we finally obtain

〈p3p4|p1p2〉(a) =
(−iλ)2

2
(2π)4 δ(4)(p1 + p2 − p3 − p4)

×
∫

d4q

(2π)4
i

q2 −m2 + iε

i

k2 −m2 + iε
, (12.29)

where the value of k is fixed at

k = −p1 − p2 − q = −p3 − p4 + q , (12.30)

by the integration with the delta functions in (12.28). As we can see from (12.29), there
remains an undetermined momentum q which must be integrated over. This can be easily
understood by looking at the diagram once again, now in momentum space and with all
these momenta drawn explicitly. It is clear that, although we have two internal lines,
only one of the two internal momenta are independent: there is a delta function forcing
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Figure 12.3: One of the Feynman diagrams in momentum space for the four-point ampli-
tude to order λ2 in φ4 theory.

momentum conservation at each vertex, but the overall momentum conservation is not
a constraint so there is one undetermined momentum we still have to integrate over.
Diagrams (b) and (c) in Figure 12.2 are very similar and are left as an exercise.

Finally, we should consider the O(λ2) connected diagramas such as the one in Figure 12.4.
Here we see a loop correction to O(λ) to one of the external lines.

Figure 12.4: One of the Feynman diagrams in position space for the four-point amplitude
to order λ2 in φ4 theory. It corresponds to an O(λ) correction to one of the external lines.

There are obviously three other similar diagrams. Let us compute its contribution to
the amplitude 〈p3p4|p1p2〉. For this, we make use of the LSZ formula applied to the
contribution to the four-point correlation function to this order

G(4)(x1, . . . , x4)(d) =
(−iλ)2

2

∫
d4y d4z DF (x1 − y)DF (y − z)DF (y − y)DF (x2 − z)

×DF (x3 − z)DF (x4 − z) . (12.31)

Following the same procedure that lead us to (12.29), we obtain
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〈p3p4|p1p2〉(d) =
(−iλ)2

2
(2π)4 δ(4)(p1 + p2 − p3 − p4)

×
∫

d4q

(2π)4
i

q2 −m2 + iε

i

k2 −m2 + iε
, (12.32)

but where now we have

k = p2 − p3 − p4 = −p1 . (12.33)

The corresponding Feynman diagram in momentum space is shown in Figure 12.5.

Figure 12.5: One of the Feynman diagrams in momentum space for the four-point ampli-
tude to order λ2 in φ4 theory. It corresponds to an O(λ) correction to one of the external
lines, which is on shell.

But now we see that since the external legs are all on shell, we have

k2 = p21 = m2 , (12.34)

which means that the contribution 〈p3p4|p1p2〉(d) is divergent, as can be seen from (12.32).
Clearly, this is also the case with the other diagrams of this type corresponding to O(λ)
corrections of the other three external legs. The reason is the existence of an internal
propagator whose momentum goes on shell (e.g. k2 = m2 above). The same will be true of
the corrections to external legs of any diagram and up to any order in perturbation theory.
These are in fact part of the renormalization of the external legs of any diagram and should
not be considered when computing an amplitude. These diagrams should be excluded
from the calculation, since they are going to be included by the renormalization process,
which redefines the fields (leading in this case to the redefinition of the propagators) in
the presence of interactions. We could imagine including these diagrams as in Figure 12.6,

We can interpret the effects of these diagrams in a completely analogous way to the shift
of the vacuum in the presence of the interactions, |0〉 → |0̃〉. Here we are considering an
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Figure 12.6: Corrections to the external lines to all orders in perturbation theory. The
result in a redefinition of the propagator, which is absorbed as a redefinition of the fields
entering the two-point function.

asymptotic state which is not a free state of momentum p, i.e. there is a correction that
we can schematically write as

|p〉 → |p̃〉 =
√
Z |p〉 , (12.35)

where the factor
√
Z comes from the corrections to the propagation of the asymptotic

state of momentum p. But these corrections do not affect the calculation of the scattering
amplitudes we are after. When computing an amplitude to a certain order in perturba-
tion theory, we need to include the asymptotic states corrected to the appropriate level.
So these diagrams should not be explicitly present in the computation. The procedure
to exclude these diagrams, which can be disconnected from the rest by cutting just one
propagator line, is called amputation. To amputate a diagram is to go from its outer lines
inward up to the last propagator that is always on shell by virtue of momentum conserva-
tion, and to cut this propagator line. In the diagram of Figure 12.6 the procedure simply
corresponds to cut the diagram at the propagator with momentum k. This leaves us with
an order λ contribution to the four-point function contributing to the amplitude, plus a
propagator with an O(λ) correction, as seen in Figure 12.7. The latter, the amputated
correction, does not enter in the calculation of the amplitude. Thus, the Feynman dia-
grams in momentum space that actually contribute to the computation of the scattering
amplitude, are the connected and amputated diagrams.

12.2 Feynman Rules in Momentum Space

From the examples in the previous section we can conclude that we can write down the
contribution to the amplitude of a process to a given order in perturbation theory by
following a simple set of rules. First, we need to select the connected and amputated
Feynman diagrams up to the desired order in perturbation theory. Then, we compute
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Figure 12.7: Amputation of a diagram to obtain a connected and amputated diagram
contributing to the scattering amplitude. The dashed line on the diagram on the left
corresponds to the “amputating” cut.

the contribution of these diagrams following the Feynman rules, which for the real scalar
theory with a φ4 interaction we have been studying are:

1. Vertex: Insert a factor of −iλ for each vertex in the diagram. It is clear from (12.29)
that this will get us the factor in front up to symmetry factors. Notice that this
is the Feynman rule of the diagram at order λ (i.e. at “tree” level and without
“loops”). In general, deriving the tree-level interaction vertex is one of the first
things we need to do in a theory in order to be able to obtain its Feynman rules.

2. Momentum conservation at each vertex: The presence of the delta functions at each
vertex in (12.28) tells us that momentum conservation must be enforced at each
vertex in the diagram. This always results in an overall delta function enforcing
total momentum conservation. For our case is the factor (2π)4δ(4)(p1 +p2 +p3 +p4).

3. Loop momentum integration: Integrate over all the undetermined momenta. In
our example from Figure 12.3 , the product of the two delta functions in (12.28)
is equivalent to the overall momentum conservation. So one of the two internal
momenta remains free and must be integrated over.

4. Symmetry factors: We must divide by the symmetry factor of the diagram. In
Figure 12.3 this is 2, since the internal propagators can be exchanged without con-
sequence. The need to divide by the symmetry factors stems from the fact that in
any generic diagram we use the vertex Feynman rule (here −iλ) for each interac-
tion. But generally this has the correct combinatoric factor only in the tree-level
interaction vertex. This “mistake” must be corrected by the symmetry factor.
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Additional suggested readings

• Quantum Field Theory, by C. Itzykson and J. Zuber, Chapter 5.1.

• Quantum Field Theory , by M. Srednicki, Chapter 5.

• The Quantum Theory of Fields, Vol. I, by S. Weinberg, Section 10.3.


