
Lecture 11

Functional Integral for Fermions

Up until this point, we derived methods that allow us to compute correlation functions of
fields obeying commutation relations. To derive similar methods to be applied to fermions
we need a bit more work. In particular we need to define Grasmann variables and their
integration rules before we can write down a meaningful functional integral for fermions.

11.1 Grassmann Variables

Grassmann numbers are defined by their anti-commutation. That is given two Grassmann
numbers θ and η, we have

θη = −ηθ . (11.1)

In particular, this means that given an anti-commuting number θ, it satisfies

θ2 = 0 . (11.2)

Based on this simple properties it is possible to derive many others. For instance,

(θη)φ = −θφη = +φ(θη) , (11.3)

meaning that the product of two Grassmann numbers commutes with other Grassmann
numbers. In particular, is it of interest to point out that the most general function of a
Grassmann variable θ can be written as

f(θ) = A+Bθ , (11.4)
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where A and B are normal constants, that is it is at most linear in θ due to (11.2).

Integration of Grassmann Variables:

We would like to define the integral of a function of a Grassmann variable. This is

∫
dθ f(θ) =

∫
dθ (A+Bθ) . (11.5)

We want the integration to be invariant under a constant shift. That means that it
remains the same under the change of variables

θ −→ θ + η , (11.6)

where η is a constant Grassmann number. This gives

∫
dθ(A+Bθ) −→

∫
dθ(A+Bη +Bθ) . (11.7)

For these two expressions to be the same we need the second term on the right to vanish,
which requires

∫
dθ = 0 . (11.8)

Finally, we need to define

∫
dθ θ = C , (11.9)

where C is a constant number. We choose C = 1 for simplicity. So in sum, we have

∫
dθ = 0 ,

∫
dθ θ = 1 . (11.10)

For complex Grassmann variables, θ and θ∗, defined by

θ ≡ θ1 + iθ2√
2

, θ∗ ≡ θ1 − iθ2√
2

, (11.11)

we conveniently define the complex conjugation of a product as
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(θ η)∗ ≡ η∗ θ∗ = −θ∗ η∗ , (11.12)

which then results in the last equality above, as we should expect. So we see that the
complex conjugation here is like the hermitian conjugation of operators.

Of particular interest to us, is the fact that

dθ1 dθ2 = i dθ dθ∗ . (11.13)

Thus, we can use θ and θ∗ as independent variables.

11.2 Gaussian Integrals in Complex Grassmann Vari-

ables

We start with the integral

∫
dθ∗ dθ e−θ

∗ b θ =

∫
dθ∗ dθ(1− θ∗ b θ) ,

=

∫
dθ∗ dθ (1 + θ θ∗ b) = b , (11.14)

where we used the convention that the relative sign between the two integrals is +1. So
we arrive at

∫
dθ∗ dθ e−θ

∗ b θ = b . (11.15)

It is interesting to contrast the result above with the one we would obtain if θ was a
normal complex number (2π/b ). Another integral of interest will be

∫
dθ∗ dθ θ θ∗ e−θ

∗ b θ =

∫
dθ∗ dθ θ θ∗ (1− θ∗ b θ)

=

∫
dθ∗ dθ θ θ∗ (1 + θ∗ θ b) = 1 . (11.16)

If we now consider a multidimensional integral of the type
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I =

(∏
i

∫
dθ∗i dθi

)
e−θ

∗
i Bij θj , (11.17)

where B is a hermitian matrix with eigenvalues bi. We can rotate the θi’s and the θ∗i ’s by
a unitary transformation that diagonalizes B, defined by

θ∗i → U∗ki θ
′∗
k

θi → Uj` θ
′
` , (11.18)

we can then write

I =

(∏
i

∫
dθ∗i dθi

)
e−

∑
i θ

∗
i bi θi

=

(∏
i

∫
dθ∗i dθi e

−θ∗i bi θi

)
=
∏
i

bi

= detB , (11.19)

where in the last equality we used the result from (11.15).

11.3 Functional Integral for Fermions

We can finally write down the functional integral for free fermion fields. First, we notice
that the generating functional for fermion fields in the presence of sources requires two of
them: one for ψ and another one for ψ̄. This gives the generating functional

Z[η, η̄] =

∫
Dψ̄Dψ ei

∫
d4x{ψ̄(x)Ox ψ(x)+η̄(x)ψ(x)+ψ̄(x)η(x)} , (11.20)

where the Dirac operator is Ox = i 6∂x−m, and η and η̄ are the linearly coupled sources.
If in particular we want to compute the generating functional without sources is given by
(using (11.19)

Z[0, 0] =

∫
Dψ̄Dψ ei

∫
d4x ψ̄Oψ = N detO , (11.21)
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unlike the bosonic case, where the sourceless generating functional goes like 1/
√

detO.
Finally, in complete analogy with the bosonic case, we can prove that we can define

ψ′(x) = ψ(x) + i

∫
d4y SF (x− y) η(y) (11.22)

and

ψ̄′(x) = ψ̄(x) + i

∫
d4y η̄(y)SF (y − x) , (11.23)

such that when we make the replacement in the original functional integral in (11.20) and
assume that

Dψ̄′Dψ′ = Dψ̄Dψ , (11.24)

then we obtain

Z[η, η̄] = Z[0, 0] e−
∫
d4x d4y η̄(x)SF (x−y) η(y) , (11.25)

where SF (x− y) satisfies

Ox SF (x− y) = iδ(4)(x− y) . (11.26)

Of course, SF (x−y) is the fermion propagator, and we can easily show that in momentum
space it should be

SF (x− y) =

∫
d4k

(2π)4
e−ik·x

i

6k −m+ iε
. (11.27)

Additional suggested readings

• An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Chapter
9.5.

• Quantum Field Theory in a Nutshell, by A. Zee. Chapter 2.5, first few sections.


