
Lecture 10

Interactions and Feynman Diagrams

We will start considering a theory with interactions with lagrangian density

L = L0 + Lint. (10.1)

where the first term L0 refers to the free lagrangian and the sencond one Lint. contains
the interaction terms. For instance, for a real scalar theory we have

L0 =
1

2
∂µφ∂µφ−

1

2
m2φ2 . (10.2)

The generating functional in the presence of a linearly coupled source J(x) now is

Z[J ] = N

∫
Dφ ei

∫
d4x {L0+Lint.+J(x)φ(x)} , (10.3)

Defining the generating functional for the free theory as

Z0[J ] ≡ N

∫
Dφ ei

∫
d4x {L0+J(x)φ(x)} , (10.4)

we can rewrite (10.3) as

Z[J ] = ei
∫
d4xLint.[−i δ

δJ(x)
] Z0[J ] . (10.5)

In the expression above Lint.[−iδ/(δJ(x))] means that the argument of the functional
Lint.[φ(x)] is obtained by functional derivative in the following way
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−i δ

δJ(x)
Z0[J ] = N

∫
Dφ(x)φ(x) ei

∫
d4x{L0+J(x)φ(x)} (10.6)

which can be readily checked from (10.4). Then we can verify that expanding the expo-
nential in (10.5)

Z[J ] =

(
1 + i

∫
d4xLint.[−i

δ

δJ(x)
] (10.7)

+
(i)2

2!

∫
d4xLint.[−i

δ

δJ(x)
]

∫
d4yLint.[−i

δ

δJ(y)
] + . . .

)
Z0[J ] ,

we reobtain (10.3).

Perturbation theory means here that we assume that the interaction is a perturbation and
we can only take the first few terms as a very good approximation. More precisely, we
assume that there is a parameter in Lint. whose increasing powers in the higher order terms
in (10.7) suppress them relative to lower order terms. These are the basis for perturbation
theory in the functional integral. As an example let us consider

Lint. = − λ
4!
φ4 (10.8)

This results in

Z[J ] = e−i
λ
4!

∫
d4z (−i δ

δJ(z))
4

Z0[J ] . (10.9)

Remembering from the previous lecture that

Z0[J ] = Z0[0] e−
1
2

∫
d4x

∫
d4yJ(x)DF (x−y) J(y) , (10.10)

we are now in a position to compute any correlation function by using

G(n)(x1, . . . , xn) = (−i)n 1

Z[0]

δn

δJ(x1) . . . δJ(xn)
Z[J ]

∣∣∣∣
J=0

, (10.11)

applied to (10.9). For instance, let us compute the two-point function at order λ in
perturbation theory:
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G(2)(x1, x2) =
(−i)2

Z[0]

(
δ2

δJ(x1)δJ(x2)

)
Z[J ]

∣∣∣∣
J=0

(10.12)

=
(−i)2

Z[0]

(
δ2

δJ(x1)δJ(x2)

) (
1− i λ

4!

∫
d4z

(
−i δ

δJ(z)

)4

+ . . .

)
Z0[J ]

∣∣∣∣∣
J=0

.

First of all, we notice that here Z[0] 6= Z0[0], since they differ by terms starting at order
λ:

Z[0] = Z0[0] +N

∫
Dφ ei

∫
d4z L0[φ] i

(
− λ

4!

)∫
d4xφ(x)4

+N

∫
Dφ ei

∫
d4zL0[φ] i

2

2!

(
−λ
4!

)2 ∫
d4xφ4(x)

∫
d4yφ4(y) + . . . . (10.13)

Remembering that Z0[0] = 〈0|0〉 is the normalization of the vacuum, we can interpret
Z[0] as the normalization of the new vacuum in the presence of interactions, |0̃〉. Then
(10.13) corresponds to

〈0̃|0̃〉 = 〈0|0〉+ . . . , (10.14)

where the dots correspond to the λ-dependent terms in (10.13).

+

x

+ x y + ...

x y

Figure 10.1: Corrections to the vacuum state coming from the interactions. The first two
bubbles are the order λ, whereas the third and fourth diagrams are the λ2 corrections
appearing in Z[0]− Z0[0].

We can represent these corrections diagrammatically thanks to Wick’s theorem. The first
correction corresponds to the product of two propagators such as∫

d4xDF (x− x)DF (x− x) , (10.15)

and is represented by the first diagram in Figure 10.1. The term of order λ2 in the second
line of (10.13) will result in the products of four propagators giving terms such as∫

d4x

∫
d4y DF (x− x)DF (x− y)DF (x− y)DF (y − y) , (10.16)
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as represented in the third diagram in Figure 10.1, or in the following combination∫
d4x

∫
d4y DF (x− y)DF (x− y)DF (x− y)DF (x− y) , (10.17)

as represented by the last diagram of Figure 10.1. As we will see later in this lecture,
the role of the denominator Z[0] as a correction of the vacuum will be to cancel the
disconnected diagrams in the numerator of the correlation functions.

Now, going back to the two-point function in (10.12), and neglecting the denominator
Z[0] for the moment (i.e. assuming Z[0] = Z0[0] or |0̃〉 = |0〉), we obtain the relevant con-
tributions G(2)(x1, x2) by focusing on the terms of the free generating functional Z0[J ] in
(10.10) that contain 6 sources or three propagators, since we have six functional derivatives
with respect to source at various points. There will be two possible topologies associated
with the diagrams shown in Figure 10.2

Figure 10.2: Order λ corrections to the two-point function in the theory described in the
text.

The disconnected diagram has a combinatoric factor of 6× 4!, whereas the connected one
has a factor of 6× 4× 4!, resulting in

G(2)(x1, x2) = DF (x1 − x2)− iλ
(

1

8
DF (x1 − x2)

∫
d4z DF (z − z)DF (z − z)

+
1

2

∫
d4z DF (x1 − z)DF (x2 − z)DF (z − z)

)
. (10.18)

As we will formally show in the last section, the disconnected diagram in Figure 10.2 does
not constitute a correction ot the two-point function per se but it is a correction to the
vacuum state of the free theory resulting from the interactions at order λ. As such, it
will be cancelled when we consider the normalization using the correct vacuum |0̃〉 (i..e.
dividing by Z[0] instead of by Z0[0]).

Similarly, we can compute the four-point function. In this case, at order λ we will have a
total of eight functional derivatives acting of Z0[J ]. Focusing on the diagrams where each
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of the external four points x1, x2, x3, x4 are connected to an internal point z, we have a
contribution to the four-point function to order λ which is given by

−i λ
4!

8× 6× 4× 2× 4!

(
−1

2

)4
1

4!

∫
d4z DF (x1 − z)DF (x2 − z)DF (x3 − z)DF (x4 − z)

= (−iλ)

∫
d4z DF (x1 − z)DF (x2 − z)DF (x3 − z)DF (x4 − z) . (10.19)

Notice that the combinatoric in these diagrams is such that all factors cancel. The factor
8 × 6 × 4 × 2 corresponds to the number of ways to pick sources out of the eight that
are not paired by a propagator. The first 4! factor corresponds to the remaining choices
for the derivatives with respect to J(z). Finally, there is an additional denominator of 4!
coming from the fact that we picked the fourth term in the expansion of the exponential
in (10.10). This corresponds to the connected diagram

Figure 10.3: Connected diagram contribution to the four-[point function to order λ.

The connected diagram of Figure 10.3 will be useful to define the insertion of the in-
teraction in several diagrams. For instance, if in the diagrams of (10.2) we insert −iλ
for each occurrence of the four-point vertex, we would be making a mistake of a factor
of 8 in the first diagram. This can be attributed to the symmetry of the bubble type
diagram in which we can perform two mirror images times an overall “up-down” switch,
resulting in a factor of 2×2×2 = 8 denominator. Similarly, in the second diagram of Fig-
ure 10.2 we have a factor of 2 coming from the mirror switch of the bubble in the diagram.
These factors in denominators, of 8 and 2 respectively in the diagrams of Figure 10.2 are
called symmetry factors. They are the factors we have to divide each diagram by when
considering that the insertion of the vertex is given merely by −iλ.

Of course, there are many more diagrams for the four-point function at order λ. But they
are all disconnected. The diagram on the left in Figure 10.4 is a vacuum correction, i.e.
the free propagation is unaffected by the interaction, but the ground state gets a correction
of order λ. This diagram will be cancelled by the use of Z[0] in the denominator as it is
a correction to the vacuum of the theory.
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Figure 10.4: Disconnected order λ contributions to the four-point function.

On the other hand, the diagram on the right corresponds to a correction of order λ to
one of the propagators. So it would be already taken into account if we assume the
corrected propagator to O(λ). This is the content of the discussion about connected vs.
disconnected Feynman diagrams that we will have in the next section.

Higher orders in λ, i.e. higher orders in the insertion of the interaction, can be easily
obtained. For instance, for the order λ2 corrections to the two-point function we need
to consider 10 functional derivatives, or 5 propagators. Diagrams look like those in Fig-
ure 10.5, where the one on the left is a connected order λ2 correction to the propagator,
whereas the one on the right is a correction to the vacuum.

Figure 10.5: Order λ2 corrections to the two-point function.

10.1 Perturbation Theory in the Correlation Func-

tion

In the previous section we implemented perturbation theory in the generating functional,
such as in (10.7). However, it is also possible to implement it directly in the correlation
functions. For this purpose we need to start by expanding the linear source term in (10.3)
obtaining
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Z[J ] = N

∫
Dφ ei

∫
d4x {L0+Lint.}

(
1 + i

∫
d4xJ(x)φ(x)

+
i2

2!

∫
d4x1 d

4x2J(x1)J(x2)φ(x1)φ(x2)

+ · · ·+ in

n!

∫
d4x1 . . . d

4xn J(x1) . . . J(xn)φ(x1) . . . φ(xn) + . . .

)
(10.20)

which can be rewritten as

Z[J ] = N

∞∑
n=0

in

n!

∫
d4x1 . . . d

4xn J(x1) . . . J(xn)

∫
Dφ ei

∫
d4x{L0+Lint.} φ(x1) . . . φ(xn) .

(10.21)

On the other hand, equation (10.11) for the n-point correlation function means that we
can also write the generating functional as

Z[J ] = Z[0]
∞∑
n=0

in

n!

∫
d4x1 . . . d

4xn J(x1) . . . J(xn)G(n)(x1, . . . , xn) . (10.22)

In fact equations (10.11) and (10.22) are equivalent. By comparing (10.22) with (10.21)
we infer that

G(n)(x1, . . . , xn) =
1

Z[0]

∫
Dφ ei

∫
d4x{L0+Lint.} φ(x1) . . . φ(xn) . (10.23)

Equation (10.23) gives as the n-point correlation function in the presence of interactions
and directly from a functional integral. We can now implement perturbation theory
directly in the correlation functions by expanding the exponential containing Lint. up to
the desired order. Let us consider again the two-point function and the four-point function
in a real scalar theory in the presence of the interaction (10.8).

Two-point Function:

We want to compute the contributions to the two-point function up to order λ. From
(10.23) we have

G(2)(x1, x2) =
1

Z[0]

∫
Dφ ei

∫
d4xL0 φ(x1)φ(x2) ×

(
1− i λ

4!

∫
d4xφ4(x) + . . .

)
, (10.24)
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where the dots denote higher orders in λ. If, as we did in the previous section, we take
Z[0] = Z0[0], then it is clear that the functional integrals can be performed using Wick’s
theorem, since they only depend on the free lagrangian L0. For instance, the first term
is clearly the free propagator DF (x1 − x2), the zeroth order in λ. The second term, the
contribution to order λ, is given by

−i λ
4!

1

Z[0]

∫
d4y

∫
Dφ ei

∫
d4xL0 φ(x1)φ(x2)φ

4(y) . (10.25)

Then, using the Z[0] = Z0[0] approximation, the path integral in (10.25) can be thought
of as the vacuum expectation value of the time-ordered product of six fields in the free
theory. But Wick theorem tells us how to compute these: they are given by the products
of three propagators summed over all the possible pairings. Equation (10.25) can then be
rewritten as

−i λ
4!

∫
d4y {3DF (x1 − x2)DF (y − y)DF (y − y) + 12DF (x1 − y)DF (x2 − y)DF (y − y)} ,

(10.26)

where the factors of 3 and 12 are the combinatoric factors of the two types of diagrams:
free propagation from x1 to x2 plus vacuum correction, and correction of the propagator
to order λ. It can be checked that this result is identical to (10.12) and corresponds to the
Feynman diagrams of Figure 10.2. Just as we did then, the bubble diagrams correcting
the vacuum will cancel when considering the interactions correcting the Z[0] = Z0[0]
approximation.

Four-point Function:

The four-point function up to order λ is

G(4)(x1, x2, x3, x4) =
1

Z[0]

∫
Dφ ei

∫
d4xL0 φ(x1)φ(x2)φ(x3)φ(x4)

(
1− i λ

4!

∫
d4yφ4(y) + . . .

)
.

(10.27)

Once again, the functional integral is done by using Wick theorem result. For instance,
the fully connected diagram of Figure 10.3 is obtained by pairing each external point xi,
with i = (1−4) with each of the points being integrated over. This brings a combinatoric
factor of 4! that completely cancels the 4! in the denominator, resulting in the final result
of (10.19).

Due to the reliance on Wick theorem, we will refer to the method above as the Wick
theorem method. Either way we compute the correlation functions, we can see that there
are connected and disconnected diagrams. We will see that all diagrams can be obtained
from the connected ones.
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10.2 Connected Generating Functional

We have seen that in picturing the results for the correlation functions in perturbation
theory in the form of Feynman diagrams, there are connected as well as disconnected
diagrams. However, it is clear that all disconnected diagrams can be obtained as the
product of connected ones. For instance, consider the case of the diagram on the right in
Figure 10.4: it can clearly be the product of the free propagator with the order λ correction
to the propagator in the second term of (10.18). In general, if CI is a connected diagram
of type I, we can obtain any diagram D as

D =
1

sD

∏
I

(CI)
nI (10.28)

where nI is the number of repeated diagrams of type I and sD is a symmetry factor
that accounts for the exchange among identical connected diagrams. The combinatorics
associated with the exchange of identical connected diagrams dictates that

sD =
∏
I

nI ! . (10.29)

The diagram D can be anything, connected of disconnected. But the generating functional
is built from the sum of all diagrams. Thus

Z[J ] ∼
∑
{nI}

D , (10.30)

where the sum is over all possible sets of numbers {nI} since we are computing all the
diagrams to all order in perturbation theory. Then, we can write

Z[J ] ∼
∑
{nI}

∏
I

1

nI !
(CI)

nI . (10.31)

Now to each diagram D corresponds a set of numbers {nI} . But since in Z[J ] we must
include all diagrams to all orders in perturbation theory, the we must be have all possible
values of nI from 0 up to ∞. Thus, we have

Z[J ] ∼
∏
I

∞∑
nI=0

1

nI !
(CI)

nI =
∏
I

eCI = e
∑
I CI . (10.32)
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Our final result is then that the generating functional of all diagrams can be written as an
exponential of the sum of al the connected diagrams! That is we can define the generating
functional for all connected diagrams iW [J ] by

Z[J ] = eiW [J ] . (10.33)

The connected generating functional iW [J ] will be useful when we require the connected
correlation functions. This will be the case every time we need to compute physical
observables, such as transition amplitudes for scattering or the potential energy of a given
field configuration.

Additional suggested readings

• Quantum Field Theory , by M. Srednicki, Chapter 8.

• Quantum Field Theory in a Nutshell, by A. Zee. Chapter 1.7, first few sections on
free field theory.


