
Lecture 1

Why do we need Quantum Field
Theory ?

Quantum Field Theory (QFT) is, at least in its origin, the result of trying to work with
both quantum mechanics and special relativity. Loosely speaking, the uncertainty prin-
ciple tells us that we can violate energy conservation by ∆E as long as it is for a small
∆t. But on the other hand, special relativity tells us that energy can be converted into
matter. So if we get a large energy fluctuation ∆E (for a short ∆t) this energy might
be large enough to produce new particles, at least for that short period of time. How-
ever, quantum mechanics does not allow for such process. For instance, the Schrödinger
equation for an electron describes the evolution of just this one electron, independently
of how strongly it interacts with a given potential. The same continues to be true of its
relativistic counterpart, the Dirac equation. We need a framework that allows for the
creation (and annihilation) of quanta. This is QFT.

We can say the same thing by being a bit more precise so that we can start to see
how we are going to tackle this problem. Let us consider a classical source that emits
particles with an amplitude JE(x), where x ≡ xµ is the space-time position. We also
consider an absorption source of amplitude JA(x). We assume that a particle of mass m
that is emitted at y propagates freely before being absorbed at x.

Figure 1.1: Emission, propagation and absorption of a particle.

The quantum mechanical amplitude is given by
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A =

∫
d4x d4y 〈x|e−iH∆t|y〉 JA(x) JE(y) , (1.1)

where ∆t = x0 − y0. Here we have used the notation

d4x ≡ dt d3x , (1.2)

to denote the Minkowski space four-volume, i.e. we are integrating over time and all space.
We want to check if the amplitude in (1.1) is Lorentz invariant, i.e. if it is compatible
with special relativity. Writing

H =
√
p2 +m2 ≡ ωp , (1.3)

as the frequency associated with momentum p, then the amplitude is

A =

∫
d4x d4y 〈x|e−iωp(x0−yo)|y〉 JA(x) JE(y) . (1.4)

If we go to momentum space using

|x〉 =

∫
d3p

(2π)3/2
|p〉 e−i~p·~x , (1.5)

and analogously for |y〉, we obtain

A =

∫
d4x d4y

∫
d3p

(2π)3/2
〈p| ei~p·~x e−iωp(x0−yo)

∫
d3p′

(2π)3/2
|p′〉 e−i~p′·~y JA(x) JE(y) . (1.6)

Using that

〈p|p′〉 = δ3(~p− ~p′)N2
p , (1.7)

where Np is the momentum-dependent normalization, we now have

A =

∫
d4x d4y JA(x) JE(y)

∫
d3p

(2π)3
N2
p e
−ipµ (xµ−yµ) , (1.8)

In the last exponential factor in (1.8) we use covariant notation, i.e.
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pµ (xµ − yµ) = p0(x0 − y0)− ~p · (~x− ~y) = ωp∆t− ~p · (~x− ~y) . (1.9)

To check if A is Lorentz invariant we are going to define the four-momentum integration
with a Lorentz invariant measure. Defining

d4p = dp0 d
3p , (1.10)

we now can compute the Lorentz invariant combination

d4p δ(p2 −m2) , (1.11)

where the delta function ensures that p2 = pµ p
µ = m2. Then we do the integral on p0 as

in

∫
dp0 δ(p

2 −m2) =

∫
dp0 δ(p

2
0 − |~p|2 −m2) =

∫
dp0

δ(p0 − ωp)
|2p0|

=

∫
dp0

δ(p0 − ωp)
2wp

,

(1.12)

remembering that ωp = +
√
p2 +m2 positive. Only the positive root contributes in (1.12)

since the fact that pµ is always time-like means that the sign of p0 is invariant. This, in
turn, means that the p0 integration interval is (0,∞), and the negative root is outside the
integration region.

This allows us to rewrite the amplitude as

A =

∫
d4x d4y JA(x) JE(y)

∫
d4p

(2π)3
δ(p2 −m2) 2ωp N

2
p e
−ipµ (xµ−yµ) . (1.13)

The expression above appears Lorentz invariant other than for the momentum dependent
factor

2ωpN
2
p . (1.14)

Thus, the choice (up to an irrelevant constant)

N2
p =

1

2ωp
, (1.15)

results in the Lorentz invariant amplitude
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A =

∫
d4x d4y JA(x) JE(y)

∫
d4p

(2π)3
δ(p2 −m2) e−ip

µ (xµ−yµ) . (1.16)

Although the quantum mechanical amplitude in (1.16) is manifestly Lorentz invariant,
there remains a problem: this expression is valid even if the interval separating x from y is
spatial, i.e. even if the separation is non-causal. This is obviously wrong, since we started
from the assumption that there is an emitting source at y and an absorbing source at x,
for which the causal order is crucial, which means that the way it is now the separation
should not be spatial.

In order to solve this problem,we are going to take a crucial step: we are going to allow
all sources to both emit and absorb, i.e. at any point x we have

J(x) = JE(x) + JA(x) . (1.17)

The amplitude then reads

A =

∫
d4x d4y J(x) J(y)

∫
d3p

(2π)3 2ωp

{
θ(x0 − y0) e−ip

µ (xµ−yµ) + θ(y0 − x0) e+ipµ (xµ−yµ)
}
.

(1.18)

The first term in (1.18) corresponds to the emission in y and absorption in x, since the
function θ(x0−y0) 6= 0 for x0 > y0. For the opposite timel order, this term is zero and then
only the second term contributes. The sign inversion in the exponential of the second term
in (1.18) needs some explaining. Surely, the time component p0 (y0 − x0) = −p0 (x0 − y0)
comes from just the inversion of the causal order. However, the inversion of the space
component from ~p ·(~x−~y) to − ~p ·(~x−~y) is possible by changing d3p to −d3p and swiching
the limits of the spatial momentum integration to preserve the overall sign.

So for time like separations, when the order of the events is an observable, only one
of these terms contributes. On the other hand, for space like separations both terms
contribute. Different observers would disagree on the temporal order of the event, however
all of them would write the same amplitude. So this amplitude is both Lorentz invariant
and causal. It is typically written as

A =

∫
d4x d4y J(x) J(y)DF (x− y) , (1.19)

where we defined

DF (x− y) ≡
∫

d3p

(2π)3 2ωp

{
θ(x0 − y0) e−ip

µ (xµ−yµ) + θ(y0 − x0) e+ipµ (xµ−yµ)
}
. (1.20)
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The two-point function above is what is called a Feynman propagator. To summarize so
far, in order to obtain a Lorentz invariant and causal quantum mechanical amplitude for
the emission, propagation and absorption of a particle we had to allow for all points in
spacetime to both emit and absorb, and we needed to allow for all possible time orders.
There is still one more thing we need to introduce.

1.1 Charged Particles

Here is the problem: if the particle propagating between y and x is charged, for instance
under standard electromagnetism, i.e. electrically charged, then because the amplitude
(1.19) does not tell us the order of events in the case of space like separation, we do not
know the sign of the current. For instance, suppose a negatively charged particle. Is it
being absorbed or emitted ? We concluded above that this absolute statement should not
be allowed. But this means that we cannot know the direction of the current.

Figure 1.2: Emission, propagation and absorption of a charged particle. Consistence with
either temporal order is restored by having anti-particles. Emission of a negatively charged
particle at y followed by absorption at x is equivalent to emission of the positively-charged
anti-particle at x, followed by absorption at y.

The solution to this problem is that for each negatively charged particle, there must be
a positively charged particle with the same mass, its anti-particle. With this addition,
it will not be possible to distinguish between say the emission of a negatively charged
particle or the absorption of its positively charged anti-particle.

In general, any time a particle has an internal quantum number that may distinguish
emission from absorption it should have a distinct anti-particle that would restore the
desired indistinguishability. For instance, neutral kaons have no electric charge, but they
carry a quantum number called “strangeness” which distinguishes the neutral kaon from
the neutral anti-kaon. In the absence of any distinguishing internal quantum number, a
particle can be its own anti-particle.

Finally, to illustrate the relationship between propagation and particle or anti-particle
identity, we consider the scattering of a particle off a localized potential. We first consider
the situation with emission at y, followed by interaction at z and finally absorption at x,
i.e. the time order is x0 > z0 > y0.
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Figure 1.3: Scattering off a localized potential.

The amplitude for this is

Ascatt. =

∫
d4x d4y J(y)DF (z − y)Aint.(z)DF (z − x) J(x) , (1.21)

where Aint.(z) is the amplitude for the local interaction with the potential at z. But
we know that the amplitude is non-zero even if events are spatially separated. In this
case then, it is possible to have a non-zero amplitude corresponding to the following time
order: y0, x0 > z0. This now would correspond to the diagram in the Figure 1.4.

Figure 1.4: Particle – anti-particle pair creation.

In this time order, a pair is created from the “vacuum” at z. The arrows indicate that a
particle propagates between z and x, where it is absorbed, whereas an anti-particle travels
from z to y. Thus, the creation of a pair particle–anti-particle, assuming there is enough
energy, is an unavoidable consequence of the marriage between quantum mechanics and
special relativity. All of the arguments above lead us to the fact that relativistic quantum
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mechanics, compatible with causality, must be a theory of quantized local fields. That
is to say, we must be able to create or annihilate quanta of the fields locally, including
particles and anti-particles. We will define what we really mean by this in future lectures.

1.2 Description of Condensed Matter Systems

Although the development of QFT historically stems from the combination of quantum
mechanics and special relativity, applications to non-relativistic systems are very much
possible. This is the case, for instance, of condensed matter systems. The motion of
electrons and ions are non-relativistic. However, quantum field theoretic descriptions are
of use in many cases. As an example, consider the description of conduction in a solid,
where electrons might jump to different bands leaving holes that have transport properties
similar to those of a particle with the opposite charge. Thus, having a formalism with
particle and anti-particle creation is helpful.

Perhaps more importantly, the microscopic description of condensed matters systems
involves a forbidingly large number of particles. However, typically at low energies/large
distances the relevant degrees of freedom are simpler as a result of phase transitions. For
instance, in an ordered solid phase, there are collective degrees of freedom describing the
system at low energies, the phonons. This is fairly common in condensed matter systems.
Field theoretic methods are particularly useful to describe the properties of these collective
modes of matter. In addition to broken symmetries, there is another way to characterize
the long range behavior of a system, related to the topological properties of the fields
describing it. Here too the field theory description is extremely useful.

Finally, the concept of renormalization, and in particular the methods of the renormal-
ization group, are central to the understanding of condensed matter systems at different
length scales. In this sense, quantum field theory and the renormalization group provide a
unifying description of many different systems, both relativistic (as in particle physics or
string theory) and non-relativistic. These connections will be made mostly in the second
part of the course.

Additional suggested readings

• The discussion above follows Modern Quantum Field Theory, A Concise Introduc-
tion, by T. Banks, Chapter 1.2.

• See The Quantum Theory of Fields, Vol.I, by S. Weinberg, Chapter 1, for a good
historical introduction.

• For a good review of special relativity, Electrodynamics, by J. D. Jackson, Chapter
11. Particularly important is understanding covariant notation, developed in 11.6
and 11.7.


